Answer:
1387908 lbm/h
Explanation:
Air flowing into jet engine = 70 lbm/s
ρ = Exhaust gas density = 0.1 lbm/ft³
r = Radius of exit with a circular cross section = 1 ft
v = Exhaust gas velocity = 1450 ft/s
Exhaust gas mass (flow rate)= Air flowing into jet engine + Fuel
Q = (70+x) lbm/s
Area of exit with a circular cross section = π×r² = π×1²= π m²
Now from energy balance
Q = ρ×A×v
⇒70+x = 0.1×π×1450
⇒70+x = 455.53
⇒ x = 455.53-70
⇒ x = 385.53 lbm/s
∴ Mass of fuel which is supplied to the engine each minute is 1387908 lbm/h
Question:
The options are
a. Technician A only
b. Technician B only
c. Both A and B
d. Neither A nor B
Answer:
The correct option is
d. Neither A nor B
Explanation:
Here, we note that to locate the receiver/driers we look at the high-pressure side of refrigerant system normally around the tubes in between the expansion valve outlet and the condenser outlet and connected to the condenser.
While the accumulator can be found, attached to the evaporator outlet within the low pressure side of the refrigerant system.
Therefore, neither Technician A nor B is correct.
Maybe this can help:
https://blogs.bu.edu/ggarber/interlace/pendulum/energy-in-a-pendulum/
Answer:
False
Explanation:
A compass can be used to determine relative direction but not absolute direction.
Answer:
b. less than
Explanation:
Moment of inertia decreases as angular velocity increases. Therefore, since the minute hand is faster than the hour hand, it is safe to say that the moment of inertia of the minute hand is less than the moment of inertia of the hour hand?