Answer:
= 3,126 m / s
Explanation:
In a crash exercise the moment is conserved, for this a system formed by all the bodies before and after the crash is defined, so that the forces involved have been internalized.
the car has a mass of m = 1.50 kg a speed of v1 = 4.758 m / s and the mass of the train is M = 3.60 kg and its speed v2 = 2.45 m / s
Before the crash
p₀ = m v₁₀ + M v₂₀
After the inelastic shock
= m
+ M
p₀ = 
m v₀ + M v₂₀ = m
+ M
We cleared the end of the train
M
= m (v₁₀ - v1f) + M v₂₀
Let's calculate
3.60 v2f = 1.50 (2.15-4.75) + 3.60 2.45
= (-3.9 + 8.82) /3.60
= 1.36 m / s
As we can see, this speed is lower than the speed of the car, so the two bodies are joined
set speed must be
m v₁₀ + M v₂₀ = (m + M)
= (m v₁₀ + M v₂₀) / (m + M)
= (1.50 4.75 + 3.60 2.45) /(1.50 + 3.60)
= 3,126 m / s
Hi there!

We know that:

U = Potential Energy (J)
K = Kinetic Energy (J)
E = Total Energy (J)
At 10m, the total amount of energy is equivalent to:
U + K = 50 + 50 = 100 J
To find the highest point the object can travel, K = 0 J and U is at a maximum of 100 J, so:
100J = mgh
We know at 10m U = 50J, so we can solve for mass. Let g = 10 m/s².
50J = 10(10)m
m = 1/2 kg
Now, solve for height given that E = 100 J:
100J = 1/2(10)h
100J = 5h
<u>h = 20 meters</u>
Answer:
a = (v² – v₀²)/ 2(s – s₀)
Explanation:
v² = v₀² + 2a (s – s₀)
We can make 'a' the subject of the above expression as follow:
v² = v₀² + 2a (s – s₀)
Subtract v₀² from both side
v² – v₀² = v₀² + 2a (s – s₀) – v₀²
v² – v₀² = v₀² – v₀² + 2a (s – s₀)
v² – v₀² = 2a (s – s₀)
Divide both side by (s – s₀)
(v² – v₀²)/ (s – s₀) = 2a
Divide both side by 2
(v² – v₀²)/ (s – s₀) ÷ 2 = a
(v² – v₀²)/ (s – s₀) × 1/2 = a
(v² – v₀²)/ 2(s – s₀) = a
a = (v² – v₀²)/ 2(s – s₀)
Here's the rule you need to know
in order to answer this question:
1 full circle ==> 360 degrees .
Got that ?
Now you could set up a proportion:
(30 degrees) / (0.01 second) = (360 degrees) / (time for full period)
Cross-multiply the proportion:
(30°) · (period) = (360°) · (0.01 sec)
Divide each side by (30°) : Period = (360° · 0.01 sec) / (30°)
= (3.6° · sec) / (30°)
= (3.6 / 30) sec
= 0.12 sec .
___________________________________
Another way to look at it:
30° takes 0.01 second
60° takes 0.02 second
90° takes 0.03 second
120° takes 0.04 second
150° takes 0.05 second
180° takes 0.06 second
210° takes 0.07 second
240° takes 0.08 second
270° takes 0.09 second
300° takes 0.10 second
330° takes 0.11 second
360° takes 0.12 second
Path for transmitting electric current. An electric circuit includes a device that gives energy to the charged particles constituting the current, such as battery or a generator; devices that use current, such as lamps, electric motors, or computers; and the connecting wires or transmission lines