<span>Answer: 0.070 m/s
Explanation:
1) balanced chemical equation:
given: 2HBr(g) → H2 (g)+Br2(g)
2) Mole ratios:
2 mol HBr : 1 mol H2
3) That means that every time 2 moles of HBr disappear 1 mol of H2 appears.
That is, the H2 appears at half rate than the HBr disappears.
∴ rate of appearance of H2 = rate of disappearance of HBr / 2 = 0.140 m/s / 2 = 0.070 m/s, which is the answer.</span>
Answer:
B. The amount of produd obtained/amount possible * 100
Explanation:
In chemistry, the yield of a chemical reaction is the quantity or amount of products obtained in that chemical reaction. It is calculated by using the following formula:
Percentage yield = Actual yield/theoretical yield × 100
- The actual yield is the amount of products got from a chemical reaction
- The theoretical yield is the amount of product got from using the balanced equation (stoichiometry).
Answer:
the answer for this question is the option D
Answer:
3.1 moles of ammonia
18.67× 10²³ molecules
Mass = 52.7 g
Explanation:
Given data:
Number of atoms of hydrogen = 5.68×10²⁴ atoms
A) Number of molecules of ammonia = ?
Solution:
First of all we will calculate the number of moles of hydrogen.
1 mole = 6.022× 10²³ atoms
5.68×10²⁴ atoms × 1 mol / 6.022× 10²³ atoms
0.94×10¹ mol
9.4 moles of hydrogen
Moles of ammonia:
3 moles of hydrogen are present in one mole of ammonia.
9.4 moles of hydrogen = 1/3×9.4 =
3.1 moles of ammonia
Number of molecules of ammonia:
1 mole contain 6.022× 10²³ molecules.
3.1 mol × 6.022× 10²³ molecules / 1 mol
18.67× 10²³ molecules
c) Mass of sample = ?
Mass = number of moles × molar mass
Mass = 3.1 moles × 17 g/mol
Mass = 52.7 g