Answer:
Gravity provides a downward force, resulting in the diver going downward. They speed up like any falling object would, the pull of gravity is a dominant force. (There is a drag force – as a result of moving through the air.)
Answer:
True
Explanation:
Going even smaller than atoms would get you to subatomic particles such as quarks. From there, it is impossible to distinguish elements. So, yes, atoms are the smallest portions of an element that retains the original characteristic of the element.
This question doesn't appear to be complete
Answer:
Explanation:
Diffraction grating is used to form interference pattern of dark and bright band.
Distance between adjacent slits (a ) = 1 / 420 mm
= 2.38 x 10⁻³ mm
2.38 x 10⁻⁶ m
wave length of red light
= 680 x 10⁻⁹ m
For bright red band
position x on the screen
= n λD / a , n = 0,1,2,3 etc
D = distance of screen
putting n = 1 , 2 and 3 , we can get three locations of bright red band.
x₁ = λD / a
= 680 x 10⁻⁹ x 2.8 / 2.38 x 10⁻⁶
= .8 m
= 80 cm
Position of second bright band
= 2 λD / a
= 2 x 80
= 160 cm
Position of third bright band
= 3 λD / a
= 3 x 80
= 240 cm
Answer:
a An increase in the speed will lower the internal pressure
Explanation:
Bernoulli's fluid formula

where
P = Pressure
ρ = Density of fluid
g = Acceleration due to gravity
h = Height
v = Velocity of fluid
If there is no change in height then we get

According to the Bernoulli's principle when the speed of the fluid is larger in a region of streamline flow the pressure is smaller in that region. From the above equation it can be seen that increase in speed should simultaneously reduce pressure in order for their sum to be constant.