1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha_Volkova [10]
3 years ago
11

When a low-pressure gas of hydrogen atoms is placed in a tube and a large voltage is applied to the end of the tube, the atoms w

ill emit electromagnetic radiation and visible light can be observed. If this light passes through a diffraction grating, the resulting spectrum appears as a pattern of four isolated, sharp parallel lines, called spectral lines. Each spectral line corresponds to one specific wavelength that is present in the light emitted by the source. Such a discrete spectrum is referred to as a line spectrum. By the early 19th century, it was found that discrete spectra were produced by every chemical element in its gaseous state. Even though these spectra were found to share the common feature of appearing as a set of isolated lines, it was observed that each element produces its own unique pattern of lines. This indicated that the light emitted by each element contains a specific set of wavelengths that is characteristic of that element.

Physics
1 answer:
FromTheMoon [43]3 years ago
7 0

Complete Question

The complete question is shown on the first uploaded image

Answer:

The value of n is n =7

Explanation:

    From the question we are told that

          The value of m = 2

            For every value of m, n = m+ 1, m+2,m+3,....

           The modified version of  Balmer's formula is \frac{1}{\lambda}  = R [\frac{1}{m^2} - \frac{1}{n^2}  ]

             The Rydberg constant has a value of R = 1.097 *10^{7} m^{-1}

The objective of this solution is to obtain the value of n for which the wavelength of the Balmer series line is smaller than 400nm

   

For m = 2 and n =3

    The wavelength is

                          \frac{1}{\lambda } = (1.097 * 10^7)[\frac{1}{2^2} - \frac{1}{3^2}  ]

                          \lambda = \frac{1}{1523611.1112}

                             \lambda = 656nm

For m = 2 and n = 4

    The wavelength is

                          \frac{1}{\lambda } = (1.097 * 10^7)[\frac{1}{2^2} - \frac{1}{4^2}  ]

                          \lambda = \frac{1}{2056875}

                             \lambda = 486nm

For m = 2 and n = 5

    The wavelength is

                          \frac{1}{\lambda } = (1.097 * 10^7)[\frac{1}{2^2} - \frac{1}{5^2}  ]

                          \lambda = \frac{1}{2303700}

                             \lambda = 434nm

For m = 2 and n = 6

    The wavelength is

                          \frac{1}{\lambda } = (1.097 * 10^7)[\frac{1}{2^2} - \frac{1}{6^2}  ]

                          \lambda = \frac{1}{2422222}

                             \lambda = 410nm

For m = 2 and n = 7

    The wavelength is

                          \frac{1}{\lambda } = (1.097 * 10^7)[\frac{1}{2^2} - \frac{1}{7^2}  ]

                          \lambda = \frac{1}{2518622}

                             \lambda = 397nm

So the value of n is  7

You might be interested in
A loaded 500 kg sled is traveling on smooth horizontal snow at 5 m/s when it suddenly comes to a rough region. The region is 10
sergejj [24]

Answer:

400 N

Explanation:

Change of Kinetic Energy to Friction Wok

∆KE = W

½ x m x (v(5)² - v(3)²) = f x d

½ x 500 x (5² - 3²) = f x 10

250 x (25 - 9) = f x 10

25 x 16 = f

f = 400 N

6 0
2 years ago
An object with mass M is attached to the end of a string and is raised vertically at a constant acceleration of g 10 . If it has
RoseWind [281]

Answer:

Work done against gravity will be

W = Mgℓ

Explanation:

Work done to raise the mass from ground to given height is against gravity

So here work done is given by the formula

W = F.d

here we know that

F = Mg

it is the force due to gravity which is also known as weight

so here distance moved by the object is given as

d = ℓ

now work done is given as

W = Mg ℓ

8 0
3 years ago
Read 2 more answers
2.
Phantasy [73]

Answer:

Explanation:

lll

5 0
3 years ago
Read 2 more answers
1. A student is biking to school. She travels 0.7 km north, then realizes something has fallen out of her bag.
Snezhnost [94]

Explanation:

(a) Displacement of an object is the shortest path covered by it.

In this problem, a student is biking to school. She travels 0.7 km north, then realizes something has fallen out of her bag.  She travels 0.3 km south to retrieve her item. She then travels 0.4 mi north to arrive at school.

0.4 miles = 0.64 km

displacement = 0.7-0.3+0.64 = 1.04 km

(b) Average velocity = total displacement/total time

t = 15 min = 0.25 hour

v=\dfrac{1.04\ km}{0.25\ h}\\\\v=4.16\ km/h

Hence, this is the required solution.

8 0
3 years ago
An object with a mass m slides down a rough 370 inclined plane where the coefficient of kinetic friction is 0.20. If the plane i
Svetllana [295]

Answer:

v \approx 9.312\,\frac{m}{s}

Explanation:

The Free Body Diagram of the system is presented in the image attached below. The final speed is determined by means of the Principle of Energy Conservation and the Work-Energy Theorem:

K_{A} + U_{g,A} = K_{B} + U_{g,B} + W_{loss}

K_{B} = K_{A} + U_{g,A}-U_{g,B} - W_{loss}

\frac{1}{2}\cdot m \cdot v^{2} = m\cdot g \cdot s\cdot \sin \theta - \mu_{k}\cdot m \cdot g \cdot s \cos \theta

\frac{1}{2}\cdot v^{2} = g\cdot s \cdot (\sin \theta - \mu_{k}\cdot \cos \theta)

v = \sqrt{2\cdot g \cdot s \cdot (\sin \theta - \mu_{k}\cdot \cos \theta)}

v = \sqrt{2\cdot (9.807\,\frac{m}{s^{2}} )\cdot (10\,m)\cdot (\sin 37^{\textdegree} - 0.2\cdot \cos 37^{\textdegree})}

v \approx 9.312\,\frac{m}{s}

3 0
3 years ago
Other questions:
  • Can someone help me out by balancing this equation? :')
    7·1 answer
  • A cube of an unknown element has a shiny, silvery color. The side of the cube measures 2.0 cm and the cube has a mass of 14.56 g
    8·1 answer
  • If you walk 3.0 km to the east and then 4.0 km to the north, what is the magnitude of your displacement from your original posit
    14·1 answer
  • How many wavelenghts of a wave pass a point if the frequency of the wave is 4 hertz?
    9·1 answer
  • You cant see the cells in your body because most of them are very small true or false?
    8·2 answers
  • The coloring of the blue morpho butterfly is protective. As the butterfly flaps its wings, the angle at which light strikes the
    11·1 answer
  • A 0.750-kg object hanging from a vertical spring is observed to oscillate with a period of 1.50 s. When the 0.750-kg object is r
    11·1 answer
  • What is the mass of an object that accelerates at 5 m/s2 when pushed with 100 N?
    14·1 answer
  • Pls help! <br> What is movement of energy from one system to another also known as?
    11·1 answer
  • Projectile effects are a hazard in __________________. magnetic resonance imaging (MRI) fields pediatric units emesis stations o
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!