1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlad [161]
3 years ago
13

car 2 has a mass of 150 kg and moves westward towards car 3 at a velocity of 2.2 m/s. car 3 has a mass of 265 kg and moves eastw

ard towards car 2 at a velocity of 1.5 m/s. calculate the force of Car 3 and Car 2. dunno if I phrased this right so I included a screenshot too. pls help asap will give brainliest

Physics
1 answer:
sergejj [24]3 years ago
8 0

Answer:

The force of car 3 on car 2 ≈ 1810.82 N

Explanation:

The equation for the change in momentum of the two cars are;

Conservation of linear momentum

150( 2.2 - v) = 265(1.5-v)

150 × 2.2 - 265×1.5 = (150+265)v

150 × 2.2 - 265×1.5 = -67.5 = 415×v

∴ v = -67.5/415 = -0.1627 m/s West = 0.1627 m/s East

The impulse of the net force is the amount of momentum change experienced given by the equation;

Impulse force = m \times  v_f - m \times  v_0

Where;

v_f = The final velocity

v_0 = The initial velocity

For the the 265 kg mass, we have;

v_f = 0.1627 m/s

v_0 = 1.5 m/s

Which gives the impulse a s F×Δt =  265×0.1627 - 265×1.5 = -354.38 kg·m/s

The change in kinetic energy of the collision = 1/2×265×(0.1627^2 - 1.5^2) =-294.62 J

Whereby the distance moved in one second is 0.1627 m, we have;

Work done = Force × Distance = Force × 0.1627 = 294.62

Force = 294.62/0.1627 = 1810.82 N.

You might be interested in
Kon'nichiwa~<br>please help me with this question!!​
andrezito [222]

Let's check the relationship

\\ \rm\hookrightarrow g=\dfrac{GM}{r^2}

\\ \rm\hookrightarrow g\propto G

So

  • Raindrops will fall faster . .
  • Also walking on ground would become more difficult as g increases.

Option C is wrong by now .Let's check D once

\\ \rm\hookrightarrow T\propto \dfrac{1}{\sqrt{g}}

  • So time period of simple pendulum would decrease.

4 0
2 years ago
The figure shows a 1 cm cube that has a mass of 1 gram. Calculate the density of the cube in kg/m³.
dolphi86 [110]
Density = 1 g/cm^3 = 1000 Kg/m^3
3 0
3 years ago
You have been assigned to investigate a traffic accident. The masses of car A and car B are 1300 kg and 1200 kg, respectively. C
jarptica [38.1K]

Answer:

The velocity of A before impact = 17.90 m/s

Explanation:

Coefficient of restitution = (speed of seperation)/(speed of approach)

= (v₁ - v₂)/(u₂ - u₁)

where v₁ = velocity of the car A after the impact = ?

v₂ = velocity of the car B after the impact = ?

u₂ = velocity of the car B before the impact = 0 m/s (it was initially at rest)

u₁ = velocity of car A before the impact = ?

First of, we can solve for v₂, the velocity of car B after the impact, from some of the information given in the question.

- Skid marks indicate car B slid 10 m after the impact

- The coefficient of kinetic friction the tires and road is 0.8.

According to the work energy theorem, the work done by frictional force in stopping the car B is equal to the change in kinetic energy of the car B. (All after collision)

W = ΔK.E

ΔK.E = (1/2)(1200)(v₂²) - 0 (final kinetic energy is 0 since the car comes to stop eventually)

ΔK.E = (600v₂²) J

W = F × d

where F = frictional force = μmg = 0.8×1300×9.8 = 10,192 N

d = distance the car skids over before stopping = 10 m

W = 10,192 × 10 = 101,920 J

W = ΔK.E

101,920 = 600v₂²

v₂² = (101920/600) = 169.867

v₂ = 13.03 m/s

But recall,

Coefficient of restitution = (v₁ - v₂)/(u₂ - u₁)

For the sake of convention, we take the direction of car A's initial velocity to be the positive direction.

u₁ = ?

u₂ = 0 m/s

v₁ = ?

v₂ = +13.03 m/s

Coefficient of restitution = 0.4

0.4 = (v₁ - 13.03)/(0 - u₁)

-0.4u₁ = v₁ - 13.03

v₁ = 13.03 - 0.4u₁

But this is a collision. In a collision, the linear momentum is usually conserved.

Momentum before collision = Momentum after collision

m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂

1300u₁ + (1200×0) = 1300v₁ + (1200×13.03)

1300u₁ + 0 = 1300v₁ + 15639.95

1300u₁ = 1300v₁ + 15639.95

But recall, from the coefficient of restitution relation,

v₁ = 13.03 - 0.4u₁

Substituting this into the momentum balance equation.

1300u₁ = 1300v₁ + 15639.95

1300u₁ = 1300(13.03 - 0.4u₁) + 15639.95

1300u₁ = 16943.28 - 520u₁ + 15639.95

1820u₁ = 32,583.23

u₁ = (32,583.23/1820)

u₁ = 17.90 m/s

Therefore, the velocity of A before impact = 17.90 m/s

Hope this Helps!!!

4 0
3 years ago
If you weigh 882 N on EARTH (HINT: What number do we ALWAYS use for gravity on Earth), what is your mass? ​
Softa [21]
882 divided by 9.81 (this is acceleration due to gravity) it equals 89.91
4 0
2 years ago
You throw a ball from the balcony onto the court in the basketball arena. You release the ball at a height of 7.00 m above the c
Mariana [72]

Answer:

Your friend has to wait 0.26 s after you throw the ball to start running.

Explanation:

The equation that gives the position vector of the ball is as follows:

r = (x0 + v0 · t · cos α, y0 + v0 · t ·sin α + 1/2 · g · t²)

Where:

x0 = initial horizontal positon

v0 = initial velocity

t = time

α = throwing angle

y0 = initial vertical position

g = acceleration due to gravity

The equation of displacement of your friend is as follows:

x = x0 + v0 · t + 1/2 · a · t²

Where:

x = position of your friend at time t

x0 = initial position

v0 = initial velocity

t = time

a = acceleration

Please, see the attached figure for a description of the situation. Notice that the frame of reference is located at the throwing point.

Let´s find the time of flight of the ball. We know that at the final time, the y-component of the vector r has to be -6.00 m (1 m above the ground). Then:

y = y0 + v0 · t ·sin α + 1/2 · g · t²

-6.00 m = 0 m + 9.00 m/s · t · sin 33.0° - 1/2 · 9.8 m/s² · t²

0 = -4.9 m/s² · t² + 9.00 m/s · sin 33.0° · t + 6.00 m

Solving the quadratic equation:

t = 1.71 s

Now that we have the time of flight, we can calculate the x-component of the vector r (the horizontal distance traveled by the ball):

x= x0 + v0 · t · cos α

x = 0m + 9.00 m/s · 1.71 s · cos 33°

x = 12.9 m

Then, your friend will have to run (12.9 m - 11.0 m) 1.9 m to catch the ball 1 m above the ground.

Let´s see, how much time it takes your friend to run that distance:

x = x0 + v0 · t + 1/2 · a · t²      (x0 = 0, v0 = 0)

x = 1/2 · a · t²

1.9 m = 1/2 · 1.80 m/s² · t²

Solving for t

t = 1.45 s

Then, since the time of flight of the ball is 1.71 s, your friend has to wait

1.71 s - 1.45 s = 0.26 s after you throw the ball to start running.

6 0
2 years ago
Other questions:
  • -Select ALL that apply-
    10·1 answer
  • Algorithm to determine number of shortest paths between two nodes
    15·1 answer
  • Does anyone know how to find the answer key to this?
    11·1 answer
  • Large electric fields in cell membranes cause ions to move through the cell wall. The field strength in a typical membrane is 1.
    5·1 answer
  • A flat, 101 turn current‑carrying loop is immersed in a uniform magnetic field. The area of the loop is 5.61×10−4 m2, and the an
    10·1 answer
  • D. What is one watt power? Calculate the power of
    13·1 answer
  • You are working as a letter sorter in a U.S. Post Office. Postal regulations require that employees' footwear must have a minimu
    15·1 answer
  • Can someone pls help i’m not good at pysics
    10·2 answers
  • How do the sclera and the cornea compare?
    12·1 answer
  • the electrostatic force between two objects is 40N. if the charge of one object is cut in half, and the distance is doubled, wha
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!