Based on the situation above the the work done was 400 Joules. <span>Q = FS cos(theta) is the so-called work function. It's important to learn the work physics; you'll see it over and over in science/physics class. Theta is the angle between the force vector F and the distance vector S. In your problem we assume theta = 0, the two vectors were assumed aligned.</span>
<u>Increase the thickness of the wire</u> would decrease the resistance in a wire
Explanation:
Thicker wires have a larger cross-section that increases the surface area with which electrons can flow unimpeded. The thicker the wire, therefore, the lower the resistance.
Thin wires have very high resistance the reason the thin tungsten in a bulb glows because it is heated from the high resistance of many electrons trying to pass through a very small cross-section.
The answer would be a speed
Pitch is the impression the listener gets of the <em>frequency</em> of the sound.
The speed of the sound is <em>not</em> related to its pitch/frequency.
If the speed and frequency were related, that would be a real problem. Bands, orchestras, and choirs could not exist ! All the instruments in the orchestra could play a note together, at the same time. But then the higher instruments ... the flute, trumpet, violins, high guitar strings and high piano keys ... would travel to you fast, and the lower instruments ... the trombone, tuba, double bass, bass drum, low guitar strings and the low piano keys ... would travel to you slow. They all played the note at the same time, but by the time you heard it, it would be all smeared out ... every instrument arriving at your ear at a different time !