Answer:
Explanation:
Let the balls collide after time t .
distance covered by falling ball
s₁ = v₀ t + 1/2 g t²
distance covered by rising ball
s₂ = v₀ t - 1/2 g t²
Given ,
s₁ + s₂ = D
D = v₀ t + 1/2 g t² + v₀ t - 1/2 g t²
= 2v₀ t
t = D / 2v₀
s₂ = v₀ t - 1/2 g t²
= v₀ x D / 2v₀ - (1/2) x g x D² / 4v₀²
= D / 2 - gD² / 8 v₀²
Uh I think it’s point guard
Answer:
Intensive properties
Density
Color
temperature
Melting point
Extensive properties
Mass
Volume
Total Energy
Explanation:
Intensive properties: In Physics, Intensive properties which are not depend of the amount of matter in a sample, It only depends of the type of matter, some examples of intensive properties are:
1. Density: It is a intensive property. It can explain better with a example: the water density is 1000 kg/m3, So if we have 1 liter or 1000 liters of water the density will be the same for the two samples.
2. Color: Solid sodium chloride is white. If you have 2 samples the first recipient with 2 kilograms of NaCl and the second with 10 kilograms of NaCl. The color of the substance does not depend on the amount of the substance.
As was mentioned before the same theory is applied to temperature and melting point concepts.
On the other hand,
Extensive properties are properties of the matter which depend on the amount of matter that is present in the system or sample. some examples are:
1. Mass: It is a property that measures the amount of matter that an object contains. For example, 10 kilograms of solid Copper contains a higher mass than 2 kilograms of the same metal.
2. Volume: It is a property which measures the space occupied by an object or a substance. For example, the space occupied by a glass of milk is lower than the space occupied by a bottle of milk, Then the volume of the glass of milk is lower than the volume of the bottle of milk.
3. Finally the total energy is contained in molecules and atoms that constituted systems so, if the amount of matter increases the number of molecules too, then the total energy will increase.
I hope it helps you.
The atom that is the most electronegative is fluorine (F).
<h3>
What is electronegative?</h3>
Electronegativity, is the tendency for an atom of a given chemical element to attract shared electrons when forming a chemical bond.
Electronegativity increases across the groups from left to right of the periodic table and decreases down the group.
Examples of electronegative elements arranged in decreasing order;
- fluorine,
- oxygen,
- nitrogen,
- chlorine,
- bromine,
- iodine,
- sulfur,
- carbon, and
- hydrogen.
Thus, the atom that is the most electronegative is fluorine (F).
Learn more about electronegativity here: brainly.com/question/24977425
#SPJ1