Answer:
Explanation:
Before it hits the ground:
The initial potential energy = the final potential energy + the kinetic energy
mgH = mgh + 1/2 mv²
gH = gh + 1/2 v²
v = √(2g (H - h))
v = √(2 * 9.81 m/s² * (0.42 m - 0.21 m))
v ≈ 2.0 m/s
When it hits the ground:
Initial potential energy = final kinetic energy
mgH = 1/2 mv²
v = √(2gH)
v = √(2 * 9.81 m/s² * 0.42 m)
v ≈ 2.9 m/s
Using a kinematic equation to check our answer:
v² = v₀² + 2a(x - x₀)
v² = (0 m/s)² + 2(9.8 m/s²)(0.42 m)
v ≈ 2.9 m/s
Answer:
Moving a magnet around a coil of wire, or moving a coil of wire around a magnet, pushes the electrons in the wire and creates an electrical current. Electricity generators essentially convert kinetic energy (the energy of motion) into electrical energy. which are called magnetic fields.
Explanation:
Answer:If the object's speed increases.
Explanation:
If the object's speed increases, then its kinetic energy will increase. If the kinetic energy increases, the change in kinetic energy will be positive.
Answer:
Tips for Balancing Chemistry Equations You may only put numbers in front of the molecules. You can never alter the subscript, as it would alter the formula. ... Begin by counting and making note of the elements present on each side of the equation. Count the number of molecules of each element on both sides of the equation. More items...
Explanation:
I dont know what the question is