1) 29.5 N/m
2) 0.100 m
Explanation:
1)
The force constant of the spring can be found by using the fact that the force on the spring is proportional to the extension of the spring (Hooke's Law). Therefore, we can write:

where
is the change in the force on the spring, where
is the force applied when the hanging mass is

is the force applied when the hanging mass is

is the change in extension of the spring, where
is the extension of the spring when the hanging mass is 0.300 kg
is the extension of the spring when the hanging mass is 1.95 kg
Solving for k,

2)
When the first mass is hanging on the spring, we have

where:
is the force applied on the spring (the weight of the hanging mass)
k is the spring constant
is the extension of the spring wrt its natural length
is the natural length of the spring (the unloaded length)
Here we have

k = 29.5 N/m

Solving for
, we find:

True, p1/t1=p2/t2. Pressure is related to temperature at which it boils so pressure does affect the boiling point.
Answer:

Explanation:
To calculate the period we need the formula:

Where
is the radius of the moon,
is the universal constant of gravitation and
is the mass of mars.
The period of Phobos:

The period of Deimos:

The ratio of the period of Phobos and Deimos:


Most terms get canceled and we have:

According to the problem

so the ratio will be:
≈ 
the ratio of the period of revolution of Phobos to that of Deimos is 0.2528