C) alternating current .
<span>
B)direct current </span>
6 meters is left because you subtract 12 meters from 6
Answer:
-0.80985201682
Explanation:
Couldn't you have used Google???
Answer:
just before landing the ground
Explanation:
Let the velocity of projection is u and the angle of projection is 30°.
Let T is the time of flight and R is the horizontal distance traveled. As there is no force acting in horizontal direction, so the horizontal velocity remains constant. Let the particle hits the ground with velocity v.
initial horizontal component of velocity, ux = u Cos 30
initial vertical component of velocity, uy = u Sin 30
Time of flight is given by

Final horizontal component of velocity, vx = ux = u Cos 30
Let vy is teh final vertical component of velocity.
Use first equation of motion
vy = uy - gT


vy = - u Sin 30
The magnitude of final velocity is given by


v = u
Thus, the velocity is same as it just reaches the ground.
The correct answer is:
sixteen times
In fact, the distance between charge q and the source S is 1 unit. Instead, the distance between charge p and the source S is 4 units. The magnitude of the electrostatic force is inversely proportional to the square of the distance between the charge and the source:

where r is the distance. If we take the force between q and S as reference, we have r=1, so that

while the force between p and S is

Therefore, we see that the force exerted between q and S is 16 times the force exerted between p and S.