Answer:
Explanation:
One prolonged blast every two minutes is an indication of incoming of a power-driven vessel underway. This blast is done to make aware other boats, about your location, in the conditions of poor visibility. The other boats will have to slow down their speed, in order to avoid collision.
Answer:
x = 4.32 [m]
Explanation:
We must divide this problem into three parts, in the first part we must use Newton's second law which tells us that the force is equal to the product of mass by acceleration.
∑F = m*a
where:
F = force = 700 [N]
m = mass = 2030 [kg]
a = acceleration [m/s²]
Now replacing:
![F=m*a\\700=2030*a\\a = 0.344[m/s^{2}]](https://tex.z-dn.net/?f=F%3Dm%2Aa%5C%5C700%3D2030%2Aa%5C%5Ca%20%3D%200.344%5Bm%2Fs%5E%7B2%7D%5D)
Then we can determine the final speed using the principle of conservation of momentum and amount of movement.

where:
m₁ = mass of the car = 2030 [kg]
v₁ = velocity at the initial moment = 0 (the car starts from rest)
Imp₁₋₂ = The impulse or momentum (force by the time)
v₂ = final velocity after the impulse [m/s]
![(2030*0) + (700*5)=(2030*v_{2})\\3500 = 2030*v_{2}\\v_{2}=1.72[m/s]](https://tex.z-dn.net/?f=%282030%2A0%29%20%2B%20%28700%2A5%29%3D%282030%2Av_%7B2%7D%29%5C%5C3500%20%3D%202030%2Av_%7B2%7D%5C%5Cv_%7B2%7D%3D1.72%5Bm%2Fs%5D)
Now using the following equation of kinematics, we can determine the distance traveled.

where:
v₂ = final velocity = 1.72 [m/s]
v₁ = initial velocity = 0
a = acceleration = 0.344 [m/s²]
x = distance [m]
![1.72^{2}=0^{2} +(2*0.344*x) \\2.97 = 0.688*x\\x = 4.32 [m]](https://tex.z-dn.net/?f=1.72%5E%7B2%7D%3D0%5E%7B2%7D%20%2B%282%2A0.344%2Ax%29%20%5C%5C2.97%20%3D%200.688%2Ax%5C%5Cx%20%3D%204.32%20%5Bm%5D)
Answer:
Mechanical weathering is the physical breakdown of rock into smaller pieces. Chemical weathering is the breakdown of rock by chemical processes.
Explanation:
Mechanical weathering (also called physical weathering) breaks rock into smaller pieces. These smaller pieces are just like the bigger rock, just smaller. That means the rock has changed physically without changing its composition. The smaller pieces have the same minerals, in just the same proportions as the original rock.
Chemical weathering is the other important type of weathering. Chemical weathering is different from mechanical weathering because the rock changes, not just in size of pieces, but in composition Chemical weathering works through chemical reactions that cause changes in the minerals.
Answer:
α = 141.5° (counterclockwise)
Explanation:
If
q₁ = +q
q₂ = -q
q₃ < 0
b = 2*a
We apply Coulomb's Law as follows
F₁₃ = K*q₁*q₃ / d₁₃² = + K*q*q₃ / (2*a)² = + K*q*q₃ / (4*a²)
F₂₃ = K*q₂*q₃ / d₂₃² = - K*q*q₃ / (5*a²)
(d₂₃² = a² + (2a)² = 5*a²)
Then
∅ = tan⁻¹(2a/a) = tan⁻¹(2) = 63.435°
we apply
F₃x = - F₂₃*Cos ∅ = - (K*q*q₃ / (5*a²))* Cos 63.435°
⇒ F₃x = - 0.0894*K*q*q₃ / a²
F₃y = - F₂₃*Sin ∅ + F₁₃
⇒ F₃y = - (K*q*q₃ / (5*a²))* Sin 63.435° + (K*q*q₃ / (4*a²))
⇒ F₃y = 0.0711*K*q*q₃ / a²
Now, we use the formula
α = tan⁻¹(F₃y / F₃x)
⇒ α = tan⁻¹((0.0711*K*q*q₃ / a²) / (- 0.0894*K*q*q₃ / a²)) = - 38.5°
The real angle is
α = 180° - 38.5° = 141.5° (counterclockwise)