An aqueous solution of potassium sulfate exhibits colligative properties. Colligative properties are properties that depends on the concentration of a substance in a solution. These properties are freezing point depression, vapor pressure lowering, osmotic pressure and boiling point elevation. For this problem we use the concept of freezing point depression since we are given the freezing point of the solution. Freezing point depression is as:
ΔT = -k(f) x m x i
-2.24 - 0 = -1.86 x m x 3
<span>m = 0.4014
Thus, the molality of the solution is 0.4014.</span>
Answer:
a) pH = 4.68 (more effective)
b) pH =4.44.
Explanation:
The pH of buffer solution is obtained by Henderson Hassalbalch's equation.
The equation is:
![pH =pKa +log\frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pH%20%3DpKa%20%2Blog%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
a) pKa of acetic acid = 4.74
[salt] = [CH₃COONa] = 1.4 M
[acid] = [CH₃COOH] = 1.6 M

This is more effective as there is very less difference in the concentration of salt and acid.
b) pKa of acetic acid = 4.74
[salt] = [CH₃COONa] = 0.1 M
[acid] = [CH₃COOH] = 0.2 M

Answer:
B. Cu + 4HNO3 → Cu(NO3)2 + 2H2O + 2NO2
Explanation:
Hello,
In this case, we should understand oxidizing agents as those substances able to increase the oxidation state of another substance, therefore, in B. reaction we notice that copper oxidation state at the beginning is zero (no bonds are formed) and once it reacts with nitric acid, its oxidation states raises to +2 in copper (II) nitrate, thus, in B. Cu + 4HNO3 → Cu(NO3)2 + 2H2O + 2NO2 nitritc acid is acting as the oxidizing agent.
Moreover, in the other reactions, copper (A.), sodium (C. and D.) remain with the same initial oxidation state, +2 and +1 respectively.
Regards.
Answer: it would be b time taken by the glass surface to dry
Explanation:
i had took the test and i got it right
C
explanation; ( i’m smart )