Answer:
pH = 10.75
Explanation:
To solve this problem, we must find the molarity of [OH⁻]. With the molarity we can find the pOH = -log[OH⁻]
Using the equation:
pH = 14 - pOH
We can find the pH of the solution.
The molarity of Ca(OH)₂ is 2.8x10⁻⁴M, as there are 2 moles of OH⁻ in 1 mole of Ca(OH)₂, the molarity of [OH⁻] is 2*2.8x10⁻⁴M = 5.6x10⁻⁴M
pOH is
pOH = -log 5.6x10⁻⁴M
pOH = 3.25
pH = 14-pOH
<h3>pH = 10.75</h3>
Potential energy can be calculated by the formula Pe=mgh. Plug in your values:
Pe=mgh
Pe=(6 kg)(9.8m/s^2)(100 m)
Pe=5880 kg x m^2/s^2, or 5880 Joules
Answer is 2KClO3 3O2 + 2KCl
Answer:
The correct answer is B) electronegativities of the bonded atoms in a molecule of the compound .
Explanation:
When two atoms forming a bond differ in their electronegativities at that time bond polarity is generated
In simple words a bond will be polar when the bonding electrons are not equally shared by two atoms.As a result the atom attract the bonding electron pair towards itself gain partial negative charge and the other atom gains partial positive charge.
For HCl is a polar compound because H and Cl atom differ in their electronegativities,as a result the bonding electron pair is not shared equally by H and Cl atoms.
<u>Answer:</u> The mass of water that should be added in 203.07 grams
<u>Explanation:</u>
To calculate the molality of solution, we use the equation:

Where,
m = molality of barium iodide solution = 0.175 m
= Given mass of solute (barium iodide) = 13.9 g
= Molar mass of solute (barium iodide) = 391.14 g/mol
= Mass of solvent (water) = ? g
Putting values in above equation, we get:

Hence, the mass of water that should be added in 203.07 grams