Explanation:
It is known that the relation between pH and
is as follows.
pH = ![pK_{a} + log \frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pK_%7Ba%7D%20%2B%20log%20%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
and, 
Hence, first we will calculate the value of
as follows.

=
= 4.75
Now, we will calculate the value of pH as follows.
pH = ![pK_{a} + log \frac{[\text{sodium acetate}]}{\text{acetic acid}}](https://tex.z-dn.net/?f=pK_%7Ba%7D%20%2B%20log%20%5Cfrac%7B%5B%5Ctext%7Bsodium%20acetate%7D%5D%7D%7B%5Ctext%7Bacetic%20acid%7D%7D)
=
= 4.75 + (-0.677)
= 4.07
Therefore, we can conclude that the pH of given solution is 4.07.
Answer:
The pH of a solution is simply a measure of the concentration of hydrogen ions,
H
+
, which you'll often see referred to as hydronium cations,
H
3
O
+
.
More specifically, the pH of the solution is calculated using the negative log base
10
of the concentration of the hydronium cations.
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
pH
=
−
log
(
[
H
3
O
+
]
)
a
a
∣
∣
−−−−−−−−−−−−−−−−−−−−−−−−
Now, we use the negative log base
10
because the concentration of hydronium cations is usually significantly smaller than
1
.
As you know, every increase in the value of a log function corresponds to one order of magnitude.
Explanation:
The area is 60.2, to find area it's length times width.