Answer:Hess's law states that the change of enthalpy in a chemical reaction (i.e. the heat of reaction at constant pressure) is independent of the pathway between the initial and final states. ... Hess's law allows the enthalpy change (ΔH) for a reaction to be calculated even when it cannot be measured directly.
Explanation:
Depends on how the sword is made, what materials are used and temperature used but yes they can shatter.
When molecules cool down they stop vibrating and moving as much and so they "shrink" and the metal of the sword becomes brittle. sometimes they shrink at different phases which cause tension in the sword if this tension is strong enough it can cause the metallic bonds to break causing the sword to shatter.
hope that helps
Okay so this is in order of the blanks
matter
potential
kinetic
physical
food.
Answer:
hydration reaction
Explanation:
The type of reaction would be hydration reaction.
<u>Hydration reaction generally involves a chemical reaction of water with another reactant and in which the water ends up being converted to another product entirely. </u>
A good example of hydration reaction is the reaction between alkene and water leading to the production of alcohol.
⇄ 
Answer:
See explanation
Explanation:
The question is incomplete because the images of the models are absent. However, i will try to give you a general description of what the correct answer should be.
Beryllium is a member of group 2 in the periodic table. Beryllium has an atomic number of 4. This implies that it has four protons in its nucleus and four electrons in its shells. In a neutral atom, the number of electrons on the shells is equal to the number of protons in the nucleus.
The electronic configuration of Beryllium is 1s2 2s2. This implies that it should have two shells each containing only two electrons each.
Since we are using white foam balls for protons and black foam balls for neutrons, the clear plastic will contain four white foam balls and five black foam balls since the mass number of beryllium is 9 and number of neutrons = mass number - number of protons.
Four blue foam balls hanging from strings will represent the electrons around the nucleus.
Any model that corresponds to the description above is the correct answer.