Answer:
A. 97.8 mm
Explanation:
There are 10 divisions between 9 cm (90 mm) and the end of the ruler (10 cm or 100 mm).
Each division equals 1 mm.
Each 5 mm mark has a longer tick, and the dashed red line is between the 97 mm and 98 mm marks.
You would normally estimate to the nearest tenth of a division. An estimate of 0.8 mm is reasonable.
The length of the object is 97.0 mm + 0.8 mm = 97.8 mm.
B is wrong. You can't possibly estimate to the nearest hundredth of a division.
C is wrong. The dashed red line slightly before the 98 mm mark.
D is wrong. If the dashed red line were exactly on the 98 mm mark, you would record the measurement as 98.0 mm. This indicates that you measured the object to zero tenths on either side of the mark.
1) Chemical equation
16Fe(s) + 3S8(s) ---> 8Fe2S3
2) Molar ratios:
16 mol Fe : 3 mole S8 : 8 mol Fe2S3
3) Convert masses in grams to number of moles
number of moles = mass in grams / molar mass
a) iron, Fe
mass = 3.0 g
atomic mass = 55.845 g/mol
=> number of moles of Fe = 3.0g / 55.845 g/mol = 0.0537 mol
b) Sulfur, S8
mass = 2.5 g
molar mass = 8*32.065 g/mol = 256.52 g/mol
=> number of moles of S8 = 2.5g / 256.52 g/mol = 0.009746 mol
4) Limiting reactant
Theoretical ratio actual ratio
16 mol Fe / 3 mol S8 0.0537 mol Fe / 0.009746 mol S8
5.33 5.50
So, there is a little bit more Fe than the theoretical needed to react all the S8, which means the S8 is the limiting reactant.
5) Calculate the number of moles of iron (III) produced with 2.5 g (0.009746 moles) of S8
3moles S8 / 8 moles Fe2S3 = 0.009746 moles S8 / x
=> x = 0.009746 * 8 / 3 moles Fe2S3 = 0.026 moles Fe2S3
6) Convert 0.026 moles Fe2S3 into grams
mass in grams = number of moles * molar mass
molar mass of Fe2S3 = 207.9 g/mol
mass = 0.026 mol * 207.9 g/mol = 5.40 g
7) Answer: option D)
Answer:
67.91 g of CuCl2; 32.09 g of Cu.
Explanation:
The two masses add to 100.0 g, the initial amount of starting material, demonstrating the law of conservation of matter.
Answer:
yes it gives some bad effect
Explanation:
Answer:
Le Chatelier's principle can be applied in explaining the results
Explanation:
According to Le Chatelier's principle, when a constraint such as a change in concentration in this case is imposed on a chemical system in equilibrium, the system will adjust itself in such a way as to annul the constraint imposed.
Hence, when the color of the solution was more like that of the control, the reaction would shift towards the left. Similarly, when the color was more like it was towards the reactant, the reaction would shift towards the right.
If we were to prepare calcium oxalate, we should prepare it in a base solution. This is because when the base was added to calcium oxalate, it did not form any precipitate but when an acid was added to the calcium oxalate, it formed a precipitate.