Answer:
Love is not only the thing in this world!
Study hard, you can choose a better way of life.
Answer:
See explanation below
Explanation:
First, you are not providing any data to solve this, so I'm gonna use some that I used a few days ago in the same question. Then, you can go and replace the data you have with the procedure here
The concentration of liquid sodium will be 8.5 MJ of energy, and I will assume that the temperature will not be increased more than 15 °C.
The expression to calculate the amount of energy is:
Q = m * cp * dT
Where: m: moles needed
cp: specific heat of the substance. The cp of liquid sodium reported is 30.8 J/ K mole
Replacing all the data in the above formula, and solving for m we have:
m = Q / cp * dT
dT is the increase of temperature. so 15 ° C is the same change for 15 K.
We also need to know that 1 MJ is 1x10^6 J,
so replacing all data:
m = 8.5 * 1x10^6 J / 30.8 J/K mole * 15 m = 18,398.27 moles
The molar mass of sodium is 22.95 g/mol so the mass is:
mass = 18,398.27 * 22.95 = 422,240.26 g or simply 422 kg rounded.
Answer:
3.08x10^25
Explanation:
Divide the mass in grams by the molar mass of nitrogen (14.0067), then multiply the result by Avogadro's number (6.022x10^23). Then round to the correct amount of significant figures.
Answer:
B. The temperature of the water when the food sample has finished burning completely.
Explanation:
Heat or thermal energy is a form of energy that transfers from one object to another due to a temperature difference between the objects. The units for heat are joules or calories.
Calorimetry is the measurement of heat energy released or absorbed in a chemical reaction. A calorimeter is used in calorimetry. The calorimeter operates on the Law of Conservation of Energy which states that energy is never created or destroyed but is transformed from one form to another or between objects.
In food calorimetry, the energy released when food is burned is measured by recording the rise in temperature of water in a calorimeter when a given mass of a food sample is burned completely.
Energy can be calculated using the formula: Q = mc ∆T
where Q = the energy in joules or calories, m = the mass in grams, c = specific heat and ∆T = the change in temperature (final temperature - initial temperature).
The temperature of the water when the food sample has finished burning completely is taken as the final temperature of the water. The sample is allowed to smolder for sometime before recording the final water temperature. This is because the water temperature will continue to rise after the flame has gone out.
C bc it only has red in it