You can solve this problem through dimensional analysis.
First, find the molar mass of NaHCO3.
Na = 22.99 g
H = 1.008 g
C = 12.01 g
O (3) = 16 (3) g
Now, add them all together, you end with with the molar mass of NaHCO3.
22.99 + 1.008 + 12.01 + 16(3) = 84.008 g NaHCO3. This number means that for every mole of NaHCO3, there is 84.008 g NaHCO3. In simpler terms, 1 mole NaHCO3 = 84.008 g NaHCO3.
After finding the molar mass of sodium bicarbonate, now you can use dimensional analysis to solve for the number of moles present in 200. g of sodium bicarbonate.

Cross out the repeating units which are g NaHCO3, and the remaining unit is mole NaHCO3
200. * 1 = 200
200/ 84.008 = 2.38
Notice how there are only 3 sig figs in the answer. This is because the given problem only gave three sig figs.
Your final answer is 2.38 mol NaHCO3.
<u>Answer:</u> The outermost valence electron enters the p orbital.
<u>Explanation:</u>
Valence electrons are defined as the electrons which are present in outer most orbital of an atom.
Sulfur is the 16th element of the periodic table having 16 electrons.
Electronic configuration of sulfur atom is 
The number of valence electrons are 2 + 4 = 6
These 6 electrons enter s-orbital and p-orbital but the outermost valence electron will enter the p-orbital.
Hence, the outermost valence electron enters p orbital.
Answer:
Explanation:
Bisulphate ion is a weak acid as it can form hydronium ion in water .
HSO₄⁻ + H₂O ⇄ SO₄⁻² + H₃O⁺
The equilibrium constant of this reaction is very small , hence bisulphate ion is very weak acid.
when an ionic or covalent compound is dissolved in water they break apart into ions through process called dissociation ..the ions get attracted by the water molecules and hence they carry polar charges ..and if there is a conduction of electricity. .then we get to know that a compound is dissociated ..
<u>HOPE</u><u> </u><u>IT</u><u> </u><u>IS</u><u> </u><u>HELPFUL</u><u />
1. Find its coordination figure/coordination number of central atom (CF)
Ev = Vallence electron of central atom
Σe = electrons donated from substituents
Terminal O gives 0 electrons, hence Σe = 3 x 0
charge = charge of the compound
2. Find EP (electron pairs) and LP (lone pairs)
LP = CF - EP
3. Draw the skeleton with octet substituents (top right figure)
4. Find formal charge for each atoms (Qf)
5. Write formal charge near atom in skeleton
6. Enjoy