To determine the volume of both concentration of vinegar, we need to set up two equations since we have two unknowns.
For the first equation, we do a mass balance:
mass of 100% vinegar + mass of 13% vinegar = mass of 42% vinegar
Assuming they have the same densities, then we can write this equation in terms of volume.
V(100%) + V(13%) = V(42%)
we let x = V(100%)
y = V(13%)
x + y = 150
For the second equation, we do a component balance:
1.00x + .13y = 150(.42)
x + .13y = 63
The two equations are
x + y = 150
x + .13y = 63
Solving for x and y,
x = 50
y = 100
Therefore, you need to mix 50 mL of the 100% vinegar and 100 mL of the 13% vinegar.
b,f,h are already balanced
Answer:
The acid will be neutralized overtime
Explanation:
The presence of the pyrites leads to the leaching of large amounts of sulphuric acid, however the basic carbonates neutralizes the acid according to the reaction equation;
CaCO3 + H2SO4 ---> CaSO4 + CO2 + H2O.
This will prevent all the deleterious consequences associated with the leaching of the acid in the abandoned coal mine.
Answer:
Nitrogen, 
Explanation:
Hello,
This is a clear example of what the ideal gas equation is used for, thus, from its mathematical definition:

One can spell it out in terms of mass and molar mass:

Now, solving for the molecular mass,
:

Now, by taking into account that the gas is diatomic, the matching gas turns out to be nitrogen.
Best regards.
Answer:
Hey weirdo what's up?
So you got a question huh?
Lemme answer
As said the correct reading is 3.0grams
And the option A has 3.01 and 2.99 which are very mush precise and accurate to 3.0 gram don't you think?
So the answer is
Option ii the result of students A is both precise and accurate
Loye ya
Peace out