Answer:
The molar mass of a compound is The mass in grams of 1 mole of the compound (Option A)
Explanation:
Let's take ammonia as an example (NH3)
Mass of N = 14 g
Mass of H = 1 g
Molar mass of ammonia is Mass of N + (Mass of H).3
14 + 3 = 17 g/m
Ammonia is a compound that has 1 mol of N, plus 3 moles of H (see the formula)
The number of atoms in 1 mole of the compound --> This is Avogadro
The answer to the question is C
Answer:
Cr(OH)2(s), Na+(aq), and NO3−(aq)
Explanation:
Let is consider the molecular equation;
2NaOH(aq) + Cr(NO3)2(aq) -----> 2NaNO3(aq) + Cr(OH)2(s)
This is a double displacement or double replacement reaction. The reacting species exchange their partners. We can see here that both the sodium ion and chromium II ion both exchanged partners and picked up each others partners in the product.
Sodium ions and nitrate ions now remain in the solution while chromium II hydroxide which is insoluble is precipitated out of the solution as a solid hence the answer.
nothing ksbsshshhzvsjajbsjshjsgdvdjhsbsj
Answer:
Theoretical yield of C6H10 = 3.2 g.
Explanation:
Defining Theoretical yield as the quantity of product obtained from the complete conversion of the limiting reactant in a chemical reaction. It can be expressed as grams or moles.
Equation of the reaction
C6H11OH --> C6H10 + H2O
Moles of C6H11OH:
Molar mass of C6H110H = (12*6) + (1*12) + 16
= 100 g/mol
Mass of C6H10 = 3.8 g
number of moles = mass/molar mass
=3.8/100
= 0.038 mol.
Using stoichoimetry, 1 moles of C6H110H was dehydrated to form 1 mole of C6H10 and 1 mole of water.
Therefore, 0.038 moles of C6H10 was produced.
Mass of C6H10 = molar mass * number of moles
Molar mass of C6H10 = (12*6) + (1*10)
= 82 g/mol.
Mass = 82 * 0.038
= 3.116 g of C6H10.
Theoretical yield of C6H10 = 3.2 g