This question is a critical question. as we all know, when energy is added to any state of water, the particles move faster. and when energy is taken away from any state of water, the particles reduce speed. same with the particles of air. when energy is added; they move faster. when energy is removed; they move slower. so the answer is they move faster
Answer:
water
is missing in above equation
hope it helps
Explanation:
Constellation: The complete sky has been divided in 88 different areas, in a way we have divided Earth in countries, not necessarily having same shapes and size. These 88 areas are known as constellations. These contains a lot of stars. When we join the brightest stars together we can imagine a shape out of them which is called as Asterism. Most of the people are unaware of this difference. Some of the famous constellations are Orion, Taurus, Gemini, Hydra, Ursa Major etc.
When an astronomer says that there is a comet is in the Orion, he means that a comet is in the boundaries of Orion constellation.
In order to answer these questions, we need to know the charges on
the electron and proton, and then we need to know the electron's mass.
I'm beginning to get the creepy feeling that, in return for the generous
5 points, you also want me to go and look these up so I can use them
in calculations ... go and collect my own straw to make the bricks with,
as it were.
Ok, Rameses:
Elementary charge . . . . . 1.6 x 10⁻¹⁹ coulomb
negative on the electron
plussitive on the proton
Electron rest-mass . . . . . 9.11 x 10⁻³¹ kg
a). The force between two charges is
F = (9 x 10⁹) Q₁ Q₂ / R²
= (9 x 10⁹ m/farad) (-1.6 x 10⁻¹⁹C) (1.6 x 10⁻¹⁹C) / (5.35 x 10⁻¹¹m)²
= ( -2.304 x 10⁻²⁸) / (5.35 x 10⁻¹¹)²
= 8.05 x 10⁻⁸ Newton .
b). Centripetal acceleration =
v² / r .
A = (2.03 x 10⁶)² / (5.35 x 10⁻¹¹)
= 7.7 x 10²² m/s² .
That's an enormous acceleration ... about 7.85 x 10²¹ G's !
More than enough to cause the poor electron to lose its lunch.
It would be so easy to check this work of mine ...
First I calculated the force, then I calculated the centripetal acceleration.
I didn't use either answer to find the other one, and I didn't use " F = MA "
either.
I could just take the ' F ' that I found, and the 'A' that I found, and the
electron mass that I looked up, and mash the numbers together to see
whether F = M A .
I'm going to leave that step for you. Good luck !