Answer:
-30° C
Explanation:
Data provided in the problem:
The formula for conversion as:
F = (9/5)C + 32
Now,
for the values of F = -22 , C = ?
Substituting the value of F in the above formula, we get
-22 = (9/5)C + 32
or
-22 - 32 = (9/5)C
or
(9/5)C = - 54
or
C = - 54 × (5/9)
or
C = - 30 °
Hence, -22 Fahrenheit equals to -30°C
Answer:
1) The speed of sound increases
2) 440 Hz
3) 29°C
4) 17°C
5) 434 Hz
6) 12 m/s
7) 17.3 m
Explanation:
1) The speed of sound increases
2) V = f×λ
f = V/λ = 343/0.78 = 439.744 ≈ 440 Hz
3) V = f×λ
512 × 0.68 = 348.16 m/s
348.16 - 331 = 17.16
T = 17.16/0.6 = 28.6 ≈ 29°C
4) Increase in speed = 350 - 340 = 10
Increase in temperature = 10/0.6 = 16.67° ≈ 17°C
5) f = V/λ = 343/0.79 = 434 Hz
6) 331 + 0.6×30 - (331 × 0.6 ×10) = 12 m/s
7) V = 331 + 0.6×25 = 346m/s
λ = 346/20 = 17.3 m
Answer:
depends on what type of car it is
Explanation:
Answer:
The kinetic energy of the proton at the end of the motion is 1.425 x 10⁻¹⁶ J.
Explanation:
Given;
initial velocity of proton,
= 3 x 10⁵ m/s
distance moved by the proton, d = 3.5 m
electric field strength, E = 120 N/C
The kinetic energy of the proton at the end of the motion is calculated as follows.
Consider work-energy theorem;
W = ΔK.E

where;
K.Ef is the final kinetic energy
W is work done in moving the proton = F x d = (EQ) x d = EQd




Therefore, the kinetic energy of the proton at the end of the motion is 1.425 x 10⁻¹⁶ J.
Answer:
D . Sound energy
Explanation:
When the strings of a violin vibrate it produces sound which is sound energy. Due to the vibration of the strings the air present near the strings also vibrate in resonance with the strings. This compreesion and decompression's produced in the air is nothing but the sound. So the form of energy given off by the vibrating strings of the violin is Sound energy.