Answer:
When a man travels from Hilly region to Terai region, his weight gradually increases because the value of g is more at the Terai region than that in hilly region. 3. An object weights 20 N in air and 16 N in liquid, then answer the following questions.
Explanation:
because the value of g is more at the Terai region than that in hilly region. 3. An object weights 20 N in air and 16 N in liquid, then answer the following questions.
Answer:
20.42 N/m
Explanation:
From hook's law,
F = ke ......................... Equation 1
Where F = Force applied to the spring., k = spring constant, e = extension.
Make k the subject of the equation,
k = F/e ................. Equation 2
Note: The force on the spring is equal to the weight of the mass hung on it.
F = W = mg.
k = mg/e................ Equation 3
Given: m = 250 g = 0.25 kg, e = 37-25 = 12 cm = 0.12 m.
Constant: g = 9.8 m/s²
Substitute into equation 3
k = (0.25×9.8)/0.12
k = 20.42 N/m.
Hence the spring constant = 20.42 N/m
Answer:
The tension in string is found to be 188.06 N
Explanation:
For the vibrating string the fundamental frequency is given as:
f1 = v/2L
where,
f1 = fundamental frequency = 335 Hz
v = speed of wave
L = length of string = 28.5 cm = 0.285 m
Therefore,
v = f1 2L
v = (335 Hz)(2)(0.285)
v = 190.95 m/s
Now, for the tension:
v = √T/μ
v² = T/μ
T = v² μ
where,
T = Tension
v = speed = 190.95 m/s
μ = linear mass density of string = mass/L = 0.00147 kg/0.285 m = 5.15 x 10^-3 kg/m
Therefore,
T = (190.95 m/s)²(5.15 x 10^-3 kg/m)
<u>T = 188.06 N</u>
Answer:
displacement at 45 s = 30
65 s = 50
So the average speed over the interval from 45 s to 65 s is
(50 - 30) cm / 20 s = 1 cm / sec
As a check an average speed of 1 cm / sec for 20 sec will produce a
displacement of 1 cm / sec * 20 sec = 20 cm or from 30 to 50 cm
I believe the answer is vehicle weight