Answer:
Thermal expansion ,thermal contraction
Explanation:
They are different because it has different cause and chemical reactions
thermal contraction is a chemical reaction
Explanation:
The given data is as follows.
Mass, m = 75 g
Velocity, v = 600 m/s
As no external force is acting on the system in the horizontal line of motion. So, the equation will be as follows.
where,
= mass of the projectile
= mass of block
v = velocity after the impact
Now, putting the given values into the above formula as follows.
![75(10^{-3}) \times 600 = [(75 \times 10^{-3}) + 50] \times v](https://tex.z-dn.net/?f=75%2810%5E%7B-3%7D%29%20%5Ctimes%20600%20%3D%20%5B%2875%20%5Ctimes%2010%5E%7B-3%7D%29%20%2B%2050%5D%20%5Ctimes%20v)
= 
v = 0.898 m/s
Now, equation for energy is as follows.
E = 
= 
= 13500 J
Now, energy after the impact will be as follows.
E' = ^{2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5B75%20%5Ctimes%2010%5E%7B-3%7D%20%2B%2050%5D%280.9%29%5E%7B2%7D)
= 20.19 J
Therefore, energy lost will be calculated as follows.
= E E'
= (13500 - 20) J
= 13480 J
And, n = 
= 
= 99.85
= 99.9%
Thus, we can conclude that percentage n of the original system energy E is 99.9%.
Your average speed was
(100 m) / (13.8 s) = 7.25 m/s .
If you finished 0.001s ahead of him, then at your average speed, that corresponds to
(7.25 m/s) x (0.001 s) = 0.00725 m
That's 7.25 millimeters ... about 0.28 of an inch !
NOTE:. I think this is only valid if your speed was a constant ~7.25 m/s all the way.
Answer:
b. The internal resistance must be much smaller than the other resistances in the circuit.
Explanation:
Ammeter is used to measure the current flowing through a circuit. It is connected in series configuration with the load. In such a scenario the resistance of the ammeter should be negligible so as to make sure that the voltage drop across the resistance of ammeter is zero and it shows the correct reading of the current in the circuit.