Answer:
When the voltage is at a maximum positive value, the the current is at a value that is maximum and positive
Explanation:
We know that the relation between the Voltage and the current is given using the Ohm's law, which states that the voltage (V) is directly proportional to the current (I)
Mathematically,
V ∝ I
Hence,
When the voltage is at a maximum positive value, the the current is at a value that is maximum and positive
The velocity with which the jumper leaves the floor is 5.1 m/s.
<h3>
What is the initial velocity of the jumper?</h3>
The initial velocity of the jumper or the velocity with which the jumper leaves the floor is calculated by applying the principle of conservation of energy as shown below.
Kinetic energy of the jumper at the floor = Potential energy of the jumper at the maximum height
¹/₂mv² = mgh
v² = 2gh
v = √2gh
where;
- v is the initial velocity of the jumper on the floor
- h is the maximum height reached by the jumper
- g is acceleration due to gravity
v = √(2 x 9.8 x 1.3)
v = 5.1 m/s
Learn more about initial velocity here: brainly.com/question/19365526
#SPJ1
Light can be seen as an electromagnetic wave.
What happens when two waves, with the same frequency, superpose is called interference.
If at a certain point two waves arrive both with a crest, we have constructive interference and the amplitudes sum up, reaching the maximum value, resulting in bright spots.
If at a certain point one of the waves arrives with a crest and the other wave arrives with a trough, we have destructive interference, and the two amplitudes cancel out, resulting in dark spots.
Therefore, t<span>he dark bands on the wall are from destructive interference.</span>
The answer for the following problem is mentioned below.
The option for the question is "A" approximately.
- <u><em>Therefore the elastic potential energy of the string is 20 J.</em></u>
Explanation:
Given:
Spring constant (k) = 240 N/m
amount of the compression (x) = 0.40 m
To calculate:
Elastic potential energy (E)
We know;
<em>According to the formula;</em>
E =
× k × x × x
<u>E = </u>
<u> × k ×(x)²</u>
where;
E represents the elastic potential energy
K represents the spring constant
x represents amount of the compression in the string
So therefore,
Substituting the values in the above formula;
E =
× 240 × (0.40)²
E =
× 240 × 0.16
E =
× 38.4
E = 19.2 J or approximately 20 J
<u><em>Therefore the elastic potential energy of the string is 20 J.</em></u>
Answer:
tbh vector does not have any direction at all the answer is 0