Answer:
The length of the tube is 3.92 m.
Explanation:
Given that,
Electric potential = 100 MV
Length = 4 m
Energy = 100 MeV
We need to calculate the value of 
Using formula of relativistic energy

Put the value into the formula


Here, 



We need to calculate the length
Using formula of length

Put the value into the formula


Hence, The length of the tube is 3.92 m.
The velocity vector of the planet points toward the center of the circle is the following is true about a planet orbiting a star in uniform circular motion.
A. The velocity vector of the planet points toward the center of the circle.
<u>Explanation:</u>
Motion of the planet around the star is mentioned to be uniform and around a circular path. Objects in uniform circular motion motion has constant angular speed but the velocity of the object will not remain constant. Since the planet is in circular motion the direction of velocity vector at a particular point is tangential to the circular path at that particular point.
Thus at every point, the direction of velocity vector changes and this means the velocity is never constant. The objects in uniform circular motion has centripetal acceleration which means that velocity vector of the planet points toward the center of the circle.
To solve the exercise it is necessary to keep in mind the concepts about the ideal gas equation and the volume in the cube.
However, for this case the Boyle equation will not be used, but the one that corresponds to the Boltzmann equation for ideal gas, in this way it is understood that

Where,
N = Number of molecules
k = Boltzmann constant
V = Volume
T = Temperature
P = Pressure
Our values are given as,




Rearrange the equation to find V we have,



We know that length of a cube is given by

Therefore the Length would be given as,



Therefore each length of the cube is 3.44nm
Change in position of object = Displacment
Answer:
I answered Number 4 (Solids and Elasticity)
Explanation:
solids and elasticity