Answer:
the rates of rock formation are similar. i could be wrong tho.....
Explanation:
 
        
                    
             
        
        
        
A rain gauge! Hope this helps!
        
                    
             
        
        
        
Answer:
E. downward and constant
Explanation:
Freefall is a special case of motion with constant acceleration because the acceleration due to gravity is always constant and downward. This is true even when an object is thrown upward or has zero velocity.
For example, when a ball is thrown up in the air, the ball's velocity is initially upward. Since gravity pulls the object toward the earth with a constant acceleration ggg, the magnitude of velocity decreases as the ball approaches maximum height. At the highest point in its trajectory, the ball has zero velocity, and the magnitude of velocity increases again as the ball falls back toward the earth.
 
        
                    
             
        
        
        
Answer:
11.3 m/s
Explanation:
First, find the time it takes for the first stone to fall 3.2 m.
Given:
Δy = 3.2 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
(3.2 m) = (0 m/s) t + ½ (9.8 m/s²) t²
t = 0.81 s
Next, find the time for the first stone to land.
Given:
Δy = 15 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
(15 m) = (0 m/s) t + ½ (9.8 m/s²) t²
t = 1.75 s
The difference in time is 1.75 s − 0.81 s = 0.94 s.  Find the initial velocity needed for the second stone to land after that amount of time.
Given:
Δy = 15 m
a = 9.8 m/s²
t = 0.94 s
Find: v₀
Δy = v₀ t + ½ at²
(15 m) = v₀ (0.94 s) + ½ (9.8 m/s²) (0.94 s)²
v₀ = 11.3 m/s