Explanation:
The frequency of radio waves is 1.667 GHz
One portion of the same wave front travels 1.260 mm farther than the other before the two signals are combined.
There are two conditions for interference either constructive or destructive.
For constructive interference , the path difference is n times of wavelength and for destructive interference, the path difference is (n+1/2) times of wavelength
We can find wavelength in this case as follows :

If we divide path difference by wavelength,

It means that the path difference is 7 times of the wavelength. it means the two waves combine constructively and the value of m for the path difference between the two signals is 7.
Using the constant acceleration formula v^2 = u^2 + 2as, we can figure out that it would take a distance of 193.21m to reach 27.8m/s
Answer:
s = 20 m
Explanation:
given,
mass of the roller blader = 60 Kg
length = 10 m
inclines at = 30°
coefficient of friction = 0.25
using conservation of energy
u = 9.89 m/s
Using second law of motion
ma =μ mg
a = μ g
a = 0.25 x 9.8
a = 2.45 m/s²
Using third equation of motion ,
v² - u² = 2 a s
0² - 9.89² = 2 x 2.45 x s
s = 20 m
the distance moved before stopping is 20 m
Answer:
Explanation:
1 )
Here
wave length used that is λ = 580 nm
=580 x 10⁻⁹
distance between slit d = .46 mm
= .46 x 10⁻³
Angular position of first order interference maxima
= λ / d radian
= 580 x 10⁻⁹ / .46 x 10⁻³
= 0.126 x 10⁻² radian
2 )
Angular position of second order interference maxima
2 x 0.126 x 10⁻² radian
= 0.252 x 10⁻² radian
3 )
For intensity distribution the formula is
I = I₀ cos²δ/2 ( δ is phase difference of two lights.
For angular position of θ1
δ = .126 x 10⁻² radian
I = I₀ cos².126x 10⁻²/2
= I₀ X .998
For angular position of θ2
I = I₀ cos².126x2x 10⁻²/2
= I₀ cos².126x 10⁻²
Complete Question
A 10 gauge copper wire carries a current of 20 A. Assuming one free electron per copper atom, calculate the drift velocity of the electrons. (The cross-sectional area of a 10-gauge wire is 5.261 mm2.)
mm/s
Answer:
The drift velocity is 
Explanation:
From the question we are told that
The current on the copper is 
The cross-sectional area is
The number of copper atom in the wire is mathematically evaluated

Where
is the density of copper with a value 
is the Avogadro's number with a value 
Z is the molar mass of copper with a value 
So
Given the 1 atom is equivalent to 1 free electron then the number of free electron is

The current through the wire is mathematically represented as

substituting values

=> 