Mostly the electrons will determine the reactivity
Answer:
[HF]₀ = 0.125M
Explanation:
NaOH + HF => NaF + H₂O
Adding 20ml of 0.200M NaOH into 25ml of HF solution neutralizes 0.004 mole of HF leaving 0.004 mole NaF in 0.045L with 0.001M H⁺ at pH = 3. This is 0.089M NaF and 0.001M HF remaining.
=> 45ml of solution with pH = 3 and contains 0.089M NaF from titration becomes a common ion problem.
HF ⇄ H⁺ + F⁻
C(eq) [HF] 10⁻³M 0.089M (<= soln after adding 20ml 0.200M NaOH)
Ka = [H⁺][F⁻]/[HF]₀ => [HF]₀ = [H⁺][F⁻]/Ka
[HF]₀ = (0.001)(0.089)/(7.1 x 10⁻⁴) M = 0.125M
<span>30.0 ml of 0.15 m K2CrO4 solution will have more potassium ions.
Let's see the relative number of potassium ions for each solution. Since all the measurements are the same, the real difference is the K2CrO4 will only have 2 potassium ions per molecule while the K3PO4 solution will have 3 potassium ions per molecule.
K2CrO4 solution
30.0 * 0.15 * 2 = 9
K3PO4 solution
25.0 * 0.080 * 3 = 6
Since 9 is greater than 6, the K2CrO4 solution will have more potassium ions.</span>
Answer:
I think it is B
which I think is the correct answer
Answer:
itz elementary school in new Jersey city and I was in school for a little while I had a phone and a couple days later and I'm going next week and I'm gonna go back and watch Netflix and get some headphones and a lot more like a child and a couple more like this