Answer: b) circuit breaker interrupt
Explanation:
Wires connect to outlets through terminals and these terminals need to be tight to ensure that electricity flows with the minimum amount of resistance.
If the terminal is poorly tightened, what happens is that resistance will build up as the appliance is being used and this resistance will make the terminal hotter.
The heat will continue to rise until the circuit breaker trips to interrupt the circuit and protect the appliance.
Answer:
<em>Heat rejected to cold body = 3.81 kJ</em>
Explanation:
Temperature of hot thermal reservoir Th = 1600 K
Temperature of cold thermal reservoir Tc = 400 K
<em>efficiency of the Carnot's engine = 1 - </em>
<em> </em>
eff. of the Carnot's engine = 1 -
eff = 1 - 0.25 = 0.75
<em>efficiency of the heat engine = 70% of 0.75 = 0.525</em>
work done by heat engine = 2 kJ
<em>eff. of heat engine is gotten as = W/Q</em>
where W = work done by heat engine
Q = heat rejected by heat engine to lower temperature reservoir
from the equation, we can derive that
heat rejected Q = W/eff = 2/0.525 = <em>3.81 kJ</em>
Answer:
The speed at point B is 5.33 m/s
The normal force at point B is 694 N
Explanation:
The length of the spring when the collar is in point A is equal to:

The length in point B is:
lB=0.2+0.2=0.4 m
The equation of conservation of energy is:
(eq. 1)
Where in point A: Tc = 1/2 mcVA^2, Ts=0, Vc=mcghA, Vs=1/2k(lA-lul)^2
in point B: Ts=0, Vc=0, Tc = 1/2 mcVB^2, Vs=1/2k(lB-lul)^2
Replacing in eq. 1:

Replacing values and clearing vB:
vB = 5.33 m/s
The balance forces acting in point B is:
Fc-NB-Fs=0

Replacing values and clearing NB:
NB = 694 N