1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timofeeve [1]
3 years ago
11

Two mass streams of the same ideal gas are mixed in a steady-flow chamber while receiving energy by heat transfer from the surro

undings. The mixing process takes place at constant pressure with no work and negligible changes in kinetic and potential energies. Assume the gas has constant specific heats.
a. Determine the expression for the final temperature of the mixture in terms of the rate of heat transfer to the mixing chamber and the inlet and exit mass flow rates.
b. Obtain an expression for the volume flow rate at the exit of the mixing chamber in terms of the volume flow rates of the two inlet streams and the rate of heat transfer to the mixing chamber.
c. For the special case of adiabatic mixing, show that the exit volume flow rate is the sum of the two inlet volume flow rates.
Engineering
1 answer:
loris [4]3 years ago
8 0

Answer:

(a)The final temperature of mixture is T₃ =m₁T₁/m₃+ m₂T₂/m₃ + Qin/m₃Cp

(b) The final volume is V₃ =V₁ + V₂ + RQin/P₃Cp

(c) The volume flow rate at exit is V₃ =V₁ + V₂

Explanation:

Solution

Now

The system comprises of two inlets and on exit.

Mass flow rate enthalpy of fluid from inlet -1 be m₁ and h₁

Mass flow rate enthalpy of fluid from inlet -2 be m₂ and h₂

Mass flow rate enthalpy of fluid from  exit be m₃ and h₃

Mixing chambers do not include any kind of work (w = 0)

So, both  the kinetic and potential energies of the fluid streams are usually negligible (ke =0, pe =0)

(a) Applying the mass balance of mixing chamber, min = mout

Applying the energy balance of mixing chamber,

Ein = Eout

min hin =mout hout

miCpT₁ + m₂CpT₂ +Qin =m₃CpT₃

T₃ = miCpT₁/m₃CpT₃ + m₂CpT₂/m₃CpT₃ + Qin/m₃CpT₃ +

T₃ =m₁T₁/m₃+ m₂T/m₃ + Qin/m₃Cp

The final temperature of mixture is T₃ =m₁T₁/m₃+ m₂T₂/m₃ + Qin/m₃Cp

(b) From the ideal gas equation,

v =RT/PT

v₃ = RT₃/P₃

The volume flow rate at the exit, V₃ =m₃v₃

V₃ = m₃ RT₃/P₃

Substituting the value of T₃, we have

V₃=m₃ R/P₃ (=m₁T₁/m₃+ m₂T₂/m₃ + Qin/m₃Cp)

V₃ =  R/P₃ (m₁T₁+ m₂T₂ + Qin/Cp)

Now

The mixing process occurs at constant pressure P₃=P₂=P₁.

Hence V₃ becomes:

V₃=m₁RT₁/P₁ +m₂RT₂/P₂ + RQin/P₃Cp

V₃ =V₁ + V₂ + RQin/P₃Cp

Therefore, the final volume is V₃ =V₁ + V₂ + RQin/P₃Cp

(c) Now for an adiabatic mixing, Qin =0

Hence V₃ becomes:

V₃ =V₁ + V₂ + r * 0/P₃Cp

V₃ =V₁ + V₂ + 0

V₃ =V₁ + V₂

Therefore the volume flow rate at exit is V₃ =V₁ + V₂

You might be interested in
Consider a simple ideal Rankine cycle and an ideal regenerative Rankine cycle with one open feedwater heater. The two cycles are
borishaifa [10]

Answer:

They both have the same efficiency.

Explanation:

The simple ideal Rankine cycle and an ideal regenerative Rankine cycle with one open feedwater heater would both have the same efficiency because the extraction steam would just create a mini cycle that recirculates. The energy given to the feedwater heater is proportional to the added heat in the boiler to the feedwater in the simple cycle to raise its temperature to the same boiler inlet condition.

Therefore in comparison, the efficiency is the same for both.

4 0
3 years ago
How would you design a wheelchair for wheelchair-using basketball players? Would you make it more or less massive?
emmainna [20.7K]
Less, if it’s too big: hard to control and maneuverability for shooting wouldn’t be that good. a smaller wheelchair allows for faster movement and control, along with easier shooting and upper body movement
6 0
3 years ago
Ayo, how do I change my username on here?
nydimaria [60]

Answer:

I'm not sure

Explanation:

eeeeeeeeeeeeeeeeeeeeeee

4 0
4 years ago
Match the word with the definition:
aksik [14]

1. Renewable Resources  = (Renewable means you can keep making it) =  resources that can be replenished (such as trees)

2. Nonrenewable Resources  =  ( Nonrenewable means it can't be made once it is used up) = resources that are gone once they are used (such as fossil fuels)

3. Producer  =  ( produces something) = person who makes goods or provides services

4. Consumer  = ( uses something) =   person whose wants are satisfied by using goods and services

5. Allocate  = ( put someplace) =   distribute

6. Choice =  option

7 0
3 years ago
Read 2 more answers
A flow rate sensing device used on a liquid transport pipeline functions as follows. The device provides a 5-bit output where al
marysya [2.9K]

Answer:

Explanation:

The step by step analysis is as shown in the attached files.

8 0
3 years ago
Other questions:
  • A stone-filled pit used for waste disposal is commonly referred to as a
    15·1 answer
  • B1) 20 pts. The thickness of each of the two sheets to be resistance spot welded is 3.5 mm. It is desired to form a weld nugget
    12·1 answer
  • A random sample of 5 hinges is selected from a steady stream of product from a punch press, and the a. b. proportion nonconformi
    12·1 answer
  • Ignore swell and shrinkage for this problem.
    5·1 answer
  • In a diesel engine, the fuel is ignited by (a) spark (c) heat resulting from compressing air that is supplied for combustion (d)
    14·1 answer
  • Calculate the number of vacancies per cubic meter for some metal, M, at 749°C. The energy for vacancy formation is 0.86 eV/atom,
    5·1 answer
  • A protocol is a set of rules or procedures, usually written, that should be followed in specific situations. Which of the follow
    12·1 answer
  • How do we infer that there is
    9·1 answer
  • Question 8 (1 point)
    5·1 answer
  • A master stud pattern is laid out somewhat<br> like a?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!