1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksandrR [38]
3 years ago
6

Oil (SAE 30) at 15.6 oC flows steadily between fixed, horizontal, parallel plates. The pressure drop per unit length along the c

hannel is 35 kPa/m, and the distance between the plates is 9 mm. The flow is laminar. Determine: (a) the volume rate of flow (per meter of width), (b) the magnitude of the shearing stress acting on the bottom plate, and (c) the velocity along the centerline of the channel.
Engineering
1 answer:
Nitella [24]3 years ago
7 0

Answer:

(a) The volume rate of flow per meter width = 5.6*10⁻³ m²/s

(b) The shear stress  acting on the bottom plate = 157.5 N/m²

(c) The velocity along the centerline of the channel = 0.93 m/s

Explanation:

(a)

Calculating the distance of plate from centre line using the formula;

h = d/2

where h = distance of plate

d = diameter of flow = 9 mm

Substituting, we have;

h = 9/2

  = 4.5 mm = 4.5*10^-3 m

Calculating the volume flow rate using the formula;

Q = (2h³/3μ)* (Δp/L)

Where;

Q = volume flow rate

h = distance of plate = 4.5*10^-3 m

μ = dynamic viscosity = 0.38 N.s/m²

(Δp/L) = Pressure drop per unit length = 35 kPa/m = 35000 Pa

Substituting into the equation, we have;

Q = (2*0.0045³/3*0.38) *(35000)

    = (1.8225*10⁻⁷/1.14) * (35000)

    = 1.60*10⁻⁷ * 35000

   = 5.6*10⁻³ m²/s

Therefore, the volume flow rate = 5.6*10⁻³ m³/s

(b) Calculating the shear stress acting at the bottom plate using the formula;

τ  = h*(Δp/L)

    = 0.0045* 35000

    = 157.5 N/m²

(c) Calculating the velocity along the centre of the channel using the formula;

u(max) = h²/2μ)* (Δp/L)

   = (0.0045²/2*0.38) * 35000

   =2.664*10⁻⁵ *35000

   = 0.93 m/s

You might be interested in
A well-insulated tank in a vapor power plant operates at steady state. Saturated liquid water enters at inlet 1 at a rate of 125
Gekata [30.6K]

Answer:

a) \dot m_{3} = 135\,\frac{lbm}{s}, b) h_{3}=168.965\,\frac{BTU}{lbm}, c) T = 200.829\,^{\textdegree}F

Explanation:

a) The tank can be modelled by the Principle of Mass Conservation:

\dot m_{1} + \dot m_{2} - \dot m_{3} = 0

The mass flow rate exiting the tank is:

\dot m_{3} = \dot m_{1} + \dot m_{2}

\dot m_{3} = 125\,\frac{lbm}{s} + 10\,\frac{lbm}{s}

\dot m_{3} = 135\,\frac{lbm}{s}

b) An expression for the specific enthalpy at outlet is derived from the First Law of Thermodynamics:

\dot m_{1}\cdot h_{1} + \dot m_{2} \cdot h_{2} - \dot m_{3}\cdot h_{3} = 0

h_{3} = \frac{\dot m_{1}\cdot h_{1}+\dot m_{2}\cdot h_{2}}{\dot m_{3}}

Properties of water are obtained from tables:

h_{1}=180.16\,\frac{BTU}{lbm}

h_{2}=28.08\,\frac{BTU}{lbm} + \left(0.01604\,\frac{ft^{3}}{lbm}\right)\cdot (14.7\,psia-0.25638\,psia)

h_{2}=29.032\,\frac{BTU}{lbm}

The specific enthalpy at outlet is:

h_{3}=\frac{(125\,\frac{lbm}{s} )\cdot (180.16\,\frac{BTU}{lbm} )+(10\,\frac{lbm}{s} )\cdot (29.032\,\frac{BTU}{lbm} )}{135\,\frac{lbm}{s} }

h_{3}=168.965\,\frac{BTU}{lbm}

c) After a quick interpolation from data availables on water tables, the final temperature is:

T = 200.829\,^{\textdegree}F

8 0
3 years ago
Read 2 more answers
(Blank) welding involves manual welding with equipment anomalously controls one or more of the windy conditions while (blank) we
shepuryov [24]

Answer:

D.

Explanation:

In automated welding, defined as “welding with equipment that requires only occasional or no observation of the weld, and no manual adjustment of the equipment controls,” the welder's involvement is limited to activating the machine to initiate the welding cycle and observing the weld on an intermittent basis.

8 0
3 years ago
P9.28 A large vacuum tank, held at 60 kPa absolute, sucks sea- level standard air through a converging nozzle whose throat diame
eimsori [14]

Answer:

a)  m=0.17kg/s

b)  Ma=0.89

Explanation:

From the question we are told that:

Pressure P=60kPa

Diameter d=3cm

Generally at sea level

T_0=288k\\\\\rho_0=1.225kg/m^3\\\\P_0=101350Pa\\\\r=1.4

Generally the Power series equation for Mach number is mathematically given by

\frac{p_0}{p}=(1+\frac{r-1}{2}Ma^2)^{\frac{r}{r-1}}

\frac{101350}{60*10^3}=(1+\frac{1.4-1}{2}Ma^2)^{\frac{1.4}{1.4-1}}

Ma=0.89

Therefore

Mass flow rate

\frac{\rho_0}{\rho}=(1+\frac{1.4-1}{2}(0.89)^2)^{\frac{1.4}{1.4-1}}

\frac{1.225}{\rho}=(1+\frac{1.4-1}{2}(0.89)^2)^{\frac{1.4}{1.4-1}}

\rho=0.848kg/m^3

Generally the equation for Velocity at throat is mathematically given by

V=Ma(r*T_0\sqrt{T_e})

Where

T_e=\frac{P_e}{R\rho}\\\\T_e=\frac{60*10^6}{288*0.842\rho}

T_e=248

Therefore

V=0.89(1.4*288\sqrt{248})\\\\V=284

Generally the equation for Mass flow rate is mathematically given by

m=\rho*A*V

m=0.84*\frac{\pi}{4}*3*10^{-2}*284

m=0.17kg/s

6 0
2 years ago
A double-pane insulated window consists of two 1 cm thick pieces of glass separated by a 1.8 cm layer of air. The window measure
Elanso [62]

Answer:

(b). T = 22.55 ⁰C

(c). q = 557.8 W

Explanation:

we take follow a step by step process to solving this problem.

from the question, we have that

The two glass pieces is separated by a 1.8 cm distance layer of air.

the thickness of glass piece is 1 cm

width = 4 m

the height = 3 m

(a). the sketch of the thermal circuit is uploaded in the picture below.

(b).  the thermal resistance due to the conduction in the first glass plane is given thus;

R₁ = Lg / Kg A ................(1)

given that Kg rep. the thermal conductivity of the glass plane

A = conduction surface area

Lg = Thickness of glass plane4

taking the thermal conductivity of glass plane as Kg = 0.78 w/mk

inputting values into equation (1) we have,

R₁ = [1 (cm) ˣ 1 (m)/100 (cm)] / [(0.78 w/mk)(4m ˣ 3m)]

R₁ = 1.068 ˣ 10 ⁻³ k/w

Being that we have same thermal resistance in the first and second plane,

therefore R₁ = R₃ = 1.068 ˣ 10 ⁻³ k/w

⇒ Also the thermal resistance between air and glass as a result of the conduction by the layer is given thus

R₂ = La/KaA .....................(2)

given Ka = thermal conductivity of air

A = surface area

La = thickness of air

substituting values into the equation we have

R₂ = [1.8 (cm) ˣ 1 (m)/100 (cm)] / [(0.0262 w/mk)(4m ˣ 3m)]

R₂ = 5.73 ˣ 10⁻² k/w

Given the thermal resistance on the outer surface due to convection, we have

R₄ = 1/hA

inputting value gives R₄ = 1 / (12 w/m² ˣ 12m) = 6.94 ˣ 10⁻³k/w

R₄ = 6.94 ˣ 10⁻³k/w

Finally the sum total of thermal resistance = R₁ + R₂ + R₃ + R₄

R-total = 0.0663 kw

From this we can calculate the rate of heat loss

using  q = Ti - To / R-total ..............(3)

given Ti and To is the inside and outside temperature i.e. 27⁰C and -10⁰C

from equation (3),

q = 27- (-10) / 0.0063 = 557.8 W

q = 557.8 W  

⇒ Applying the heat transfer formula for inside surface glass temperature gives;

q = Ti - T₂ / R₃ + R₄

T₂ = Ti - q (R₃ + R₄)

T₂ = 27 - 557.8 (1.068ˣ10⁻³ + 6.94ˣ10⁻³ ) = 22.55°C

T₂ = 22.55°C

cheers i hope this helps

8 0
3 years ago
Which of the following statements about resistance is TRUE?
valentina_108 [34]

Answer:

I think it's the no 3rd

Explanation:

hope this helps

3 0
2 years ago
Other questions:
  • Part of the basic procedures is the vehicle check. What does that mean?
    7·1 answer
  • A vernier caliper will measure in what ( URGENT)
    10·1 answer
  • em 4:A water jet strikes normal to a xedplate. If diameter of the outlet of the nozzle is 8 cm,and velocity of water at the outl
    9·1 answer
  • What is the uncertainty in position of an electron of an atom if there is t 2.0 x 10' msec uncertainty in its velocity? Use the
    12·1 answer
  • ... is an actual sequence of interactions (i.e., an instance) describing one specific situation; a ... is a general sequence of
    9·1 answer
  • The removed soil at an excavation site is also called spoil?​
    14·1 answer
  • When an output gear is larger than the input gear the greater ratio is greater than 1 T or F​
    9·1 answer
  • ¿Por qué la lógica de proposiciones es conocida también como lógica de las proposiciones sin analizar?
    11·1 answer
  • 1. Explain the term engine<br>compression​
    10·2 answers
  • Connect wires to make the correct logic outputs.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!