1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nata [24]
3 years ago
15

The yield strength of mild steel is 150 MPa for an average grain diameter of 0.038 mm ; yield strength is 250 MPa for average gr

ain diameter 0.009 mm.
What is the yield strength for the same steel having an average grain diameter 0.004mm?

Hint: Assume Hall-Petch equation is valid.
Engineering
1 answer:
djyliett [7]3 years ago
6 0

Answer:

Explanation:

Hall-Petch equation provides direct relations between the strength of the material and the grain size:

σ=σ0+k/√d , where d- grain size, σ- strength for the given gran size, σ0 and k are the equation constants.

As in this problem, we don't know the constants of the equation, but we know two properties of the material, we are able to find them from the system of equations:

σ1=σ0+k/√d1

σ2=σ0+k/√d2 , where 1 and 2 represent 150MPa and 250MPa strength of the steel.

Note, that for the given problem, there is no need to convert units to SI, as constants can have any units, which are convenient for us.

From the system of equations calculations, we can find constant: σ0=55.196 MPa, k=18.48 MPa*mm^(0.5)

Now we are able to calculate strength for the grain diameter of 0.004 mm:

σ=55.196+18.48/(√0.004)=347.39 MPa

The strength of the steel with the grais size of 0.004 mm is 347.39 MPa.

You might be interested in
Consider the expansion of a gas at a constant temperature in a water-cooled piston-cylinder system. The constant temperature is
Leona [35]

Answer:

Q_{in} = W_{out} = nRT ln (\frac{V_{2}}{V_{1}})

Explanation:

According to the first thermodynamic law, the energy must be conserved so:

dQ = dU - dW

Where Q is the heat transmitted to the system, U is the internal energy and W is the work done by the system.

This equation can be solved by integration between an initial and a final state:

(1) \int\limits^1_2 {} \, dQ = \int\limits^1_2 {} \, dU - \int\limits^1_2 {} \, dW

As per work definition:

dW = F*dr

For pressure the force F equials the pressure multiplied by the area of the piston, and considering dx as the displacement:

dW = PA*dx

Here A*dx equals the differential volume of the piston, and considering that any increment in volume is a work done by the system, the sign is negative, so:

dW = - P*dV

So the third integral in equation (1) is:

\int\limits^1_2 {- P} \, dV

Considering the gas as ideal, the pressure can be calculated as P = \frac{n*R*T}{V}, so:

\int\limits^1_2 {- P} \, dV = \int\limits^1_2 {- \frac{n*R*T}{V}} \, dV

In this particular case as the systems is closed and the temperature constant, n, R and T are constants:

\int\limits^1_2 {- \frac{n*R*T}{V}} \, dV = -nRT \int\limits^1_2 {\frac{1}{V}} \, dV

Replacion this and solving equation (1) between state 1 and 2:

\int\limits^1_2 {} \, dQ = \int\limits^1_2 {} \, dU + nRT \int\limits^1_2 {\frac{1}{V}} \, dV

Q_{2} - Q_{1} = U_{2} - U_{1} + nRT(ln V_{2} - ln V_{1})

Q_{2} - Q_{1} = U_{2} - U_{1} + nRT ln \frac{V_{2}}{V_{1}}

The internal energy depends only on the temperature of the gas, so there is no internal energy change U_{2} - U_{1} = 0, so the heat exchanged to the system equals the work done by the system:

Q_{in} = W_{out} = nRT ln (\frac{V_{2}}{V_{1}})

4 0
3 years ago
X cotx expansion using maclaurins theorem.
Lemur [1.5K]

It is to be noted that it is impossible to find the Maclaurin Expansion for F(x) = cotx.

<h3>What is Maclaurin Expansion?</h3>

The Maclaurin Expansion is a Taylor series that has been expanded around the reference point zero and has the formula f(x)=f(0)+f′. (0) 1! x+f″ (0) 2! x2+⋯+f[n](0)n!

<h3>What is the explanation for the above?</h3>

as indicated above, the Maclaurin infinite series expansion is given as:

F(x)=f(0)+f′. (0) 1! x+f″ (0) 2! x2+⋯+f[n](0)n!

If F(0) = Cot 0

F(0) = ∝ = 1/0

This is not definitive,

Hence, it is impossible to find the Maclaurin infinite series expansion for F(x) = cotx.

Learn more about Maclaurin Expansion at;
brainly.com/question/7846182
#SPJ1

4 0
1 year ago
2. What is the Function of the Camshaft in an Internal Combustion Engine?
mamaluj [8]

Answer:

camshaft, in internal-combustion engines, rotating shaft with attached disks of irregular shape (the cams), which actuate the intake and exhaust valves of the cylinders.

Explanation:

I'm taking an engineering/tech class. I hope this helps! :)

8 0
2 years ago
How much power do a capacitor and inductor dissipate? Assume the capacitor/inductor have no parasitic resistance (no resistor in
Mariana [72]
They do in fact heat up while receiving energy.
4 0
2 years ago
Why might construction crews want to install pipes before the foundation is poured?
denpristay [2]
I’m a concrete mason myself and I can tell you it is a pain in the butt to Roto hammer a hole into the concrete to put the pipe in it’s a lot easier to just pour the concrete around it
6 0
2 years ago
Other questions:
  • A circular section of material is tested. The original specimen is 200 mm long and has a diameter of 13 mm. When loaded to its p
    11·2 answers
  • What is the entropy of a closed system in which 25 distinguishable grains of sand are distributed among 1000 distinguishable equ
    5·2 answers
  • *6–24. The beam is used to support a dead load of 400 lb&gt;ft, a live load of 2 k&gt;ft, and a concentrated live load of 8 k. D
    13·1 answer
  • For a copper-silver alloy of composition 25 wt% Ag-75 wt% Cu and at 775°C (1425°F) do the following:
    15·1 answer
  • A 1200-kg car moving at 20 km/h is accelerated
    5·1 answer
  • Select the correct answer.
    15·2 answers
  • 1. What is the maximum value of the linear density in a crystalline solid (linear density defined as the fraction of the line le
    10·1 answer
  • I need solution fast plesss​
    9·1 answer
  • Which step in the engineering design phase is requiring concussion prevention from blows up to 40 mph an example of?
    6·1 answer
  • A driver is traveling at 90 km/h down a 3% grade on good, wet pavement. An accident
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!