1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lyudmila [28]
2 years ago
10

11 please ..........

Mathematics
1 answer:
n200080 [17]2 years ago
4 0
0.8,0.0008 in is the answer in inches i know how u feel

You might be interested in
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
Aubrey went shopping for shrimp for her family's annual shrimp boil. Find the cost per pound. Which store has the best buy of co
denpristay [2]

Answer:

Cash Saver has the best price $13.44 per pound

Step-by-step explanation:

Lets work in oz.

PW sells 10 oz for 8.50 so 8.50/10 = 85 cents per ounce

CS sells 8 oz for 6.75 so 6.75/8 = .84 cents per ounce

Remember 16 oz in a pound

5 0
3 years ago
Suppose 15% of x equals 20% of y. What percentage of x is y ?
WINSTONCH [101]

Answer:

x = 133\frac{1}{3} of y

Step-by-step explanation:

Given:

15% of x equals 20% of y

So,

0.15x = 0.20y

so

x = 0.20 y / 0.15

x = 1.3333y

x = 133\frac{1}{3} of y

7 0
2 years ago
Read 2 more answers
A pizza shop charges $12 per pizza, p, and $4 for delivery. The expression that represents the price of a delivery is __________
lukranit [14]

Answer:

16

Step-by-step explanation:

4 0
2 years ago
Read 2 more answers
Salem High School's winter sports teams WON 72% of their games last season. If the teams played 50 games, how many games did the
Dmitriy789 [7]

Answer

Find out the how many games did the teams lose .

To prove

Formula

Percentage = \frac{Part\ value\times 100}{Total\ values}

As given

Salem High School's winter sports teams WON 72% of their games last season.

If the teams played 50 games .

Percentage = 72%

Total value = 50

Put in the formula

72 = \frac{Number\ of\ games\ win\times 100}{50}

Number\ of\ games\ win = \frac{72\times 50}{100}

Number of games win = 36

Number of  games teams loses = Total number of games - number of games win

                                                          = 50 - 36

                                                          = 14

Therefore the number of games  team loses are 14 .



5 0
3 years ago
Other questions:
  • Tara has 4 4/5 feet of rope. Part A: How many 2/5 foot pieces can Tara cut from the feet of rope? Show your work.
    15·2 answers
  • What is the sixth prime number
    9·2 answers
  • Hey, i need help with these (image attached)
    13·1 answer
  • 17. A rectangular garden 200 square feet in area is to be fenced o against rabbits. Find thedimensions that will require the lea
    13·1 answer
  • If f(x) = 2x – 4,find f-1(x)<br> Answer
    7·1 answer
  • Rewrite the expression...see attached picture....
    7·2 answers
  • The curved surface area of a right circular cylinder of height 14 cm is 88 cm2. find the diameter of the base of the cylinder​
    9·1 answer
  • George has $15. He tries to buy a movie ticket ($9.00), a pretzel ($2.65), a drink ($1.35), and two veggie cups ($1.74 each) but
    8·1 answer
  • (7-2) + (5/6 - 3/6)<br> ..................
    12·1 answer
  • Please help due soon please and thank you
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!