The formula we can use in this case is:
d = v0t + 0.5 at^2
v = at + v0
where,
d = distance travelled
v0 = initial velocity = 0 since at rest
t = time travelled
a = acceleration
v = final velocity when it took off
a. d = 0 + 0.5 * 3 * 30^2
d = 1350 m
b. v = 3 * 30 + 0
<span>v = 90 m/s</span>
According to my examination I have confirmed that I do NOT repeat do NOT know this .
Answer:
Thus, if field were sampled at same distance, the field due to short wire is greater than field due to long wire.
Explanation:
The magnetic field, B of long straight wire can be obtained by applying ampere's law

I is here current, and r's the distance from the wire to the field of measurement.
The magnetic field is obviously directly proportional to the current wire. From this expression.
As the resistance of the long cable is proportional to the cable length, the short cable becomes less resilient than the long cable, so going through the short cable (where filled with the same material) is a bigger amount of currents. If the field is measured at the same time, the field is therefore larger than the long wire because of the short wire.
Answer:
a. Volts = current x resistance
Explanation:
Ohm's law states that at constant temperature, the current flowing in an electrical circuit is directly proportional to the voltage applied across the two points and inversely proportional to the resistance in the electrical circuit.
Mathematically, Ohm's law is given by the formula;
Where;
V represents voltage measured in voltage.
I represents current measured in amperes.
R represents resistance measured in ohms.
Hence, Ohm's law gives the relationship between voltage, current and resistance of an electric circuit.
Answer:
E = 3456 J
Explanation:
The electrical energy expended in a resistor can be easily calculated by using the following formula:

where,
E = Energy Expended = ?
I = current through 5 ohm resistor = 2.4 A
R = Resistance = 5 ohms
P = Electrical Power = VI
Since,
V = IR (Ohm's Law)
Therefore,
P = (IR)(I) = I²R = (2.4 A)²(5 ohms) = 28.8 Watt
t = time taken = (2 min)(60 s/1 min) = 120 s
Therefore,
E = (28.8 Watt)(120 s)
<u>E = 3456 J</u>