When I went through with the math, the answer I came upon was:
<span>6.67 X 10^14 </span>
<span>Here is how I did it: First of all we need to know the equation. </span>
<span>c=nu X lamda </span>
<span>(speed of light) = (frequency)(wavelength) </span>
<span>(3.0 X 10^8 m/s) = (frequency)(450nm) </span>
<span>We want the answer in meters so we need to convert 450nm to meters. </span>
<span>450nm= 4.5 X 10^ -7 m </span>
<span>(3.0 X 10^8 m/s) = (frequency)(4.5 X 10^ -7 m) </span>
<span>Divide the speed of light by the wavelength. </span>
<span>(3.0 X 10^8m/s) / (4.5 X 10^ -7m) =6.67 X 10^ 14 per second or s- </span>
<span>Answer: 6.67 X 10^14 s- hope this helps</span>
Pretty sure that it is 0.
Here refrigerator removes 55 kcal heat from freezer
Refrigerator releases 73.5 kcal heat to surrounding
So here we can use energy conservation principle by II Law of thermodynamics
the law says that

here we know that
= heat released to the surrounding
= heat absorbed from freezer
W = work done by the compressor
now using above equation we can write



So here compressor has to do 18.5 k cal work on it
It’s b all objects with mass experience gravitational attraction I hope this helps
(1,500 meters) x (1 sec/330 meters) =
(1,500 / 330) (meters-sec/meters) =
4.55 seconds