Answer:
The drill's angular displacement during that time interval is 24.17 rad.
Explanation:
Given;
initial angular velocity of the electric drill,
= 5.21 rad/s
angular acceleration of the electric drill, α = 0.311 rad/s²
time of motion of the electric drill, t = 4.13 s
The angular displacement of the electric drill at the given time interval is calculated as;

Therefore, the drill's angular displacement during that time interval is 24.17 rad.
Answer:
yes
Explanation:
you will feel weary after shorter times
Answer:
Outer Shell
Explanation:
an electron of an atom, located in the outermost shell (valence shell) of the atom, that can be transferred to or shared with another atom. An electron in one of the outer shells of an atom that can participate in forming chemical bonds with other atoms. read more
Answer:
a) that laser 1 has the first interference closer to the central maximum
c) Δy = 0.64 m
Explanation:
The interference phenomenon is described by the expression
d sin θ = m λ
Where d is the separation of the slits, λ the wavelength and m an integer that indicates the order of interference
For the separation of the lines we use trigonometry
tan θ = sin θ / cos θ = y / x
In interference experiments the angle is very small
tan θ = sin θ = y / x
d y / x = m λ
a) and b) We apply the equation to the first laser
λ = d / 20
d y / x = m d / 20
y = m x / 20
y = 1 4.80 / 20
y = 0.24 m
The second laser
λ = d / 15
d y / x = m d / 15
y = m x / 15
y = 0.32 m
We can see that laser 1 has the first interference closer to the central maximum
c) laser 1
They ask us for the second maximum m = 2
y₂ = 2 4.8 / 20
y₂ = 0.48 m
For laser 2 they ask us for the third minimum m = 3
In this case to have a minimum we must add half wavelength
y₃ = (m + ½) x / 15
m = 3
y₃ = (3 + ½) 4.8 / 15
y₃ = 1.12 m
Δy = 1.12 - 0.48
Δy = 0.64 m