Answer:
32.6%
Explanation:
Equation of reaction
2KClO₃ (s) → 2KCl (s) + 3O₂ (g)
Molar mass of 2KClO₃ = 245.2 g/mol ( 122.6 × 2)
Molar volume of Oxygen at s.t.p = 22.4L / mol
since the gas was collected over water,
total pressure = pressure of water vapor + pressure of oxygen gas
0.976 = 0.04184211 atm + pressure of oxygen gas at 30°C
pressure of oxygen = 0.976 - 0.04184211 = 0.9341579 atm = P1
P2 = 1 atm, V1 = 789ml, V2 = unknown, T1 = 303K, T2 = 273k at s.t.p
Using ideal gas equation
=
V2 =
V2 = 664.1052 ml
245.2 yielded 67.2 molar volume of oxygen
0.66411 will yield =
= 2.4232 g
percentage of potassium chlorate in the original mixture =
= 32.6%
1. NaF, Na₂S, Na₃P, Na₂O
2. MgF₂, MgS, Mg₃P₂, MgO
3. AlF₃, Al₂S₃, AlP, Al₂O₃
<h3>Further explanation</h3>
Given
Ionic charge
Required
The formula of binary ionic compounds
Solution
Ionic compounds consisting of cations (ions +) and anions (ions -)
Ionic compounds usually consist of metal cations and non-metal anions
Metal: cation, positively charged.
Nonmetal: negatively charged
The anion cation's charge is crossed
The ionic compounds :
1. NaF, Na₂S, Na₃P, Na₂O
2. MgF₂, MgS, Mg₃P₂, MgO
3. AlF₃, Al₂S₃, AlP, Al₂O₃
Answer : The number of grams of solute in 500.0 mL of 0.189 M KOH is, 5.292 grams
Solution : Given,
Volume of solution = 500 ml
Molarity of KOH solution = 0.189 M
Molar mass of KOH = 56 g/mole
Formula used :

Now put all the given values in this formula, we get the mass of solute KOH.


Therefore, the number of grams of solute in 500.0 mL of 0.189 M KOH is, 5.292 grams
By adding together the number of protons and neutrons and multiplying by 1 amu, you can calculate the mass of the atom.