Explanation:
Terminal velocity is given by:

Here, m is the mass of the falling object, g is the gravitational acceleration,
is the drag coefficient,
is the fluid density through which the object is falling, and A is the projected area of the object. in this case the projected area is given by:

Recall that drag coefficient for a horizontal skydiver is equal to 1 and air density is
.

Without drag contribution the motion of the person is an uniformly accelerated motion, thus:

Answer:
The minimum speed required is 5.7395km/s.
Explanation:
To escape earth, the kinetic energy of the asteroid must be greater or equal to its gravitational potential energy:

or

where
is the mass of the asteroid,
is its distance form earth's center,
is the mass of the earth, and
is the gravitational constant.
Solving for
we get:

putting in numerical values gives


in kilometers this is

Hence, the minimum speed required is 5.7395km/s.
The tundra because it's growing season is too short.
Answer:
141 m at 65.6° N of E
Explanation:
Let E be along the positive x axis of a unit circle
N = 90°
E = 0°
SE = -45°
W = 180°
NW = 135°
east displacement
x = 140cos90 + 85cos0 + 35cos-45 + 38cos180 + 19cos135 = 58.313708... m
north displacement
y = 140sin90 + 85sin0 + 35sin-45 + 38sin180 + 19sin135 = 128.6862915... m
d = √(128.6862915² + 58.313708²) = 141.28216525... m
tanθ = 128.6862915 / 58.313708
θ = 65.622521...
Answer:
q=6.22*10^-10C
Explanation:
Two large metal plates of area 0.88 m2 face each other, 4.8 cm apart, with equal charge magnitudes but opposite signs. The field magnitude E between them (neglect fringing) is 80 N/C. Find |q|
E=α/∈, electric field within the plate
α=q/A
A=area of the plate
∈=is the permittivity
substituting , we have
The field magnitude E between them (neglect fringing)
E=q/A∈
q=EA∈
q=0.88*80*8.84*10^-12
q=6.22*10^-10C