Conducting because it occurs when two objects touch and heat is transferred
Walk out. If it's denser than air, it'll settle to the bottom
Answer:
4.75 m/s
Explanation:
The computation of the velocity of the existing water is shown below:
Data provided in the question
Tall = 2 m
Inside diameter tank = 2m
Hole opened = 10 cm
Bottom of the tank = 0.75 m
Based on the above information, first we have to determine the height which is
= 2 - 0.75 - 0.10
= 2 - 0.85
= 1.15 m
We assume the following things
1. Compressible flow
2. Stream line followed
Now applied the Bernoulli equation to section 1 and 2
So we get

where,
P_1 = P_2 = hydrostatic
z_1 = 0
z_2 = h
Now

= 4.7476 m/sec
= 4.75 m/s
The answer to your question is "20kgx9.8m/s" because weight is the force an object is exerting on another object, and the formula used to calculate force is <em>Force = Mass * Acceleration</em>.
Answer:
(C) 40m/s
Explanation:
Given;
spring constant of the catapult, k = 10,000 N/m
compression of the spring, x = 0.5 m
mass of the launched object, m = 1.56 kg
Apply the principle of conservation of energy;
Elastic potential energy of the catapult = kinetic energy of the target launched.
¹/₂kx² = ¹/₂mv²
where;
v is the target's velocity as it leaves the catapult
kx² = mv²
v² = kx² / m
v² = (10000 x 0.5²) / (1.56)
v² = 1602.56
v = √1602.56
v = 40.03 m/s
v ≅ 40 m/s
Therefore, the target's velocity as it leaves the spring is 40 m/s