Using current technology, useful parallax measurements can only be found for stars up to about 340 light years (100 parsecs) away.
Answer:
All the competitors will move with the same velocity.
Explanation:
Here, the situations for each competitor are identical. Thus, they will exert the same force and hence, their velocities at each instants will be identical.
This is a Fraunhofer single slit experiment, where the light passing through the slit produces an interference pattern on the screen, and where the dark bands (minima of diffraction) are located at a distance of

from the center of the pattern. In the formula, m is the order of the minimum,

the wavelenght,

the distance of the screen from the slit and

the width of the slit.
In our problem, the distance of the first-order band (m=1) is

. The distance of the screen is D=86 cm while the wavelength is

. Using these data and re-arranging the formula, we can find a, the width of the slit:
Answer:
a.After
second Mr Comer's speed

b.Distance travelled by Mr.Comer in
seconds

Explanation:
a. Lets recall our first equation of motion 
Now we know that
,
and

Plugging the values we have.




Then Mr.Comer's speed after
sec

b.
Lets find the distance and recall our third equation of motion.

So
distance covered.
Dividing both sides with 2a we have.

Plugging the values.


So Mr.Comer will travel a distance of
.
Answer:
t = 1.42 s and d = 35.5 m
Explanation:
Given that,
Velocity of a roadrunner is 25 m/s
A certain coyote wants to capture the roadrunner using a net dropped from an overpass that is 10 m high.
We need to find the time before the roadrunner is under the overpass and how far away from the overpass is the roadrunner when the coyote drops the net.

Let d is the distance traveled. So,
d = vt
d = 25 m/s × 1.42 s
d = 35.5 m