Answer:
To find the amplitude, wavelength, period, and frequency of a sinusoidal wave, write down the wave function in the form y(x,t)=Asin(kx−ωt+ϕ).
The amplitude can be read straight from the equation and is equal to A.
The period of the wave can be derived from the angular frequency (T=2πω).
Answer:
![B_T=2.0*10^-5[-\hat{i}+\hat{j}]T](https://tex.z-dn.net/?f=B_T%3D2.0%2A10%5E-5%5B-%5Chat%7Bi%7D%2B%5Chat%7Bj%7D%5DT)
Explanation:
To find the magnitude of the magnetic field, you use the following formula for the calculation of the magnetic field generated by a current in a wire:

μo: magnetic permeability of vacuum = 4π*10^-7 T/A
I: current = 6.0 A
r: distance to the wire in which magnetic field is measured
In this case, you have four wires at corners of a square of length 9.0cm = 0.09m
You calculate the magnetic field in one corner. Then, you have to sum the contribution of all magnetic field generated by the other three wires, in the other corners. Furthermore, you have to take into account the direction of such magnetic fields. The direction of the magnetic field is given by the right-hand side rule.
If you assume that the magnetic field is measured in the up-right corner of the square, the wire to the left generates a magnetic field (in the corner in which you measure B) with direction upward (+ j), the wire down (down-right) generates a magnetic field with direction to the left (- i) and the third wire generates a magnetic field with a direction that is 45° over the horizontal in the left direction (you can notice that in the image attached below). The total magnetic field will be:
![B_T=B_1+B_2+B_3\\\\B_{T}=\frac{\mu_o I_1}{2\pi r_1}\hat{j}-\frac{\mu_o I_2}{2\pi r_2}\hat{i}+\frac{\mu_o I_3}{2\pi r_3}[-cos45\hat{i}+sin45\hat{j}]](https://tex.z-dn.net/?f=B_T%3DB_1%2BB_2%2BB_3%5C%5C%5C%5CB_%7BT%7D%3D%5Cfrac%7B%5Cmu_o%20I_1%7D%7B2%5Cpi%20r_1%7D%5Chat%7Bj%7D-%5Cfrac%7B%5Cmu_o%20I_2%7D%7B2%5Cpi%20r_2%7D%5Chat%7Bi%7D%2B%5Cfrac%7B%5Cmu_o%20I_3%7D%7B2%5Cpi%20r_3%7D%5B-cos45%5Chat%7Bi%7D%2Bsin45%5Chat%7Bj%7D%5D)
I1 = I2 = I3 = 6.0A
r1 = 0.09m
r2 = 0.09m

Then you have:
![B_T=\frac{\mu_o I}{2\pi}[(-\frac{1}{r_2}-\frac{cos45}{r_3})\hat{i}+(\frac{1}{r_1}+\frac{sin45}{r_3})\hat{j}}]\\\\B_T=\frac{(4\pi*10^{-7}T/A)(6.0A)}{2\pi}[(-\frac{1}{0.09m}-\frac{cos45}{0.127m})\hat{i}+(\frac{1}{0.09m}+\frac{sin45}{0.127m})]\\\\B_T=\frac{(4\pi*10^{-7}T/A)(6.0A)}{2\pi}[-16.67\hat{i}+16.67\hat{j}]\\\\B_T=2.0*10^-5[-\hat{i}+\hat{j}]T](https://tex.z-dn.net/?f=B_T%3D%5Cfrac%7B%5Cmu_o%20I%7D%7B2%5Cpi%7D%5B%28-%5Cfrac%7B1%7D%7Br_2%7D-%5Cfrac%7Bcos45%7D%7Br_3%7D%29%5Chat%7Bi%7D%2B%28%5Cfrac%7B1%7D%7Br_1%7D%2B%5Cfrac%7Bsin45%7D%7Br_3%7D%29%5Chat%7Bj%7D%7D%5D%5C%5C%5C%5CB_T%3D%5Cfrac%7B%284%5Cpi%2A10%5E%7B-7%7DT%2FA%29%286.0A%29%7D%7B2%5Cpi%7D%5B%28-%5Cfrac%7B1%7D%7B0.09m%7D-%5Cfrac%7Bcos45%7D%7B0.127m%7D%29%5Chat%7Bi%7D%2B%28%5Cfrac%7B1%7D%7B0.09m%7D%2B%5Cfrac%7Bsin45%7D%7B0.127m%7D%29%5D%5C%5C%5C%5CB_T%3D%5Cfrac%7B%284%5Cpi%2A10%5E%7B-7%7DT%2FA%29%286.0A%29%7D%7B2%5Cpi%7D%5B-16.67%5Chat%7Bi%7D%2B16.67%5Chat%7Bj%7D%5D%5C%5C%5C%5CB_T%3D2.0%2A10%5E-5%5B-%5Chat%7Bi%7D%2B%5Chat%7Bj%7D%5DT)
Correct answer is Availability of soil minerals.
There are two types of limiting factors that affect plant population in a ecosystem. They are:
- Biotic
- Abiotic
Biotic factors includes food, diseases etc. Such as Invasive weed species, seed dispersal by wind, disease-causing fungal spores are examples of biotic limiting factor.
Abiotic factors include sunlight, temperature and chemical environment. The availability of soil mineral is an example of abiotic limiting factor. Growth of plant population depends on availability of soil minerals.
<u>Answer
</u>
He should make the arrow for “Path” curve downward.
<u>Explanation
</u>
The force of gravity is usually directly downward. So from the diagram, it is correctly labelled.
If the object was given a horizontal force, the direction of the inertial is also correct. Inertial is the force the resist the change of state of motion.
What Hector should change is the path followed by the object. It will be a curve not a straight line as it is drawn.
The correct answer is He should make the arrow for “Path” curve downward.
Answer:
wood, paper, air, and cloth
Explanation:
Metals and stone are considered good conductors since they can speedily transfer heat, whereas materials like wood, paper, air, and cloth are poor conductors of heat.