Answer:
The force is 
Explanation:
The diagram for this question is shown on the first uploaded image
At Equilibrium the summation of the of force on the vertical axis is zero
i.e 
=> 
is the is the speed of water at the nozzle which can be mathematically evaluated as

substituting
for R and
for


is the is the speed of water at the pipe which can be mathematically evaluated as

substituting
for R and
for


is he density of water with value 
Substituting values into the equation above


At Equilibrium the summation of the of force on the horizontal axis is zero
i.e 
=> 
Since The speed at both A and B nozzle are the same then
remains the same
Substituting values

=> 
Hence the force acting on the flange bolts required to hold the nozzle in place is



Answer:
The magnitude of the net force is √2F.
Explanation:
Since the two particles have the same charge Q, they exert the same force on the test charge; both attractive or repulsive. So, the angle between the two forces is 90° in any case. Now, as we know the magnitude of these forces and that they form a 90° angle, we can use the Pythagorean Theorem to calculate the magnitude of the resultant net force:

Then, it means that the net force acting on the test charge has a magnitude of √2F.
Answer:
Coefficient of static friction will be equal to 0.642
Explanation:
We have given acceleration 
Acceleration due to gravity 
We have to find the coefficient of static friction between truck and a cabinet will
We know that acceleration is equal to
, here
is coefficient of static friction and g is acceleration due to gravity
So 
So coefficient of static friction will be equal to 0.642
I’d say b is the better option because d is starving yourself which creates unhealthy habits, c would cause yo yo dieting or binging because you treat food as a reward which is a toxic mindset, and a same explanation. I wish there was an answer to just track what you eat, have daily exercise and enjoy in moderation, though.
Answer:
0 J
Explanation:
Kinetic energy is defined as:
KE = 1/2 m v²
where m is mass and v is velocity.
The car starts at rest, so it has zero velocity. Therefore, its initial kinetic energy is 0 J.