'a', 'b', and 'c' are all reasonable statements.
This is a problem of conservation of momentum
Momentum before throwing the rock: m*V = 96.0 kg * 0.480 m/s = 46.08 N*s
A) man throws the rock forward
=>
rock:
m1 = 0.310 kg
V1 = 14.5 m/s, in the same direction of the sled with the man
sled and man:
m2 = 96 kg - 0.310 kg = 95.69 kg
v2 = ?
Conservation of momentum:
momentum before throw = momentum after throw
46.08N*s = 0.310kg*14.5m/s + 95.69kg*v2
=> v2 = [46.08 N*s - 0.310*14.5N*s ] / 95.69 kg = 0.434 m/s
B) man throws the rock backward
this changes the sign of the velocity, v2 = -14.5 m/s
46.08N*s = - 0.310kg*14.5m/s + 95.69kg*v2
v2 = [46.08 N*s + 0.310*14.5 N*s] / 95.69 k = 0.529 m/s
Answer:
x = 1474.9 [m]
Explanation:
To solve this problem we must use Newton's second law, which tells us that the sum of forces must be equal to the product of mass by acceleration.
We must understand that when forces are applied on the body, they tend to slow the body down to stop it.
So as the body continues to move to the left, it is slowing down. Therefore we must calculate this deceleration value using Newton's second law. We must perform a sum of forces on the x-axis equal to the product of mass by acceleration. With leftward movement as negative and rightward forces as positive.
ΣF = m*a
![10 +12*sin(60)= - 6*a\\a = - 3.39[m/s^{2}]](https://tex.z-dn.net/?f=10%20%2B12%2Asin%2860%29%3D%20-%206%2Aa%5C%5Ca%20%3D%20-%203.39%5Bm%2Fs%5E%7B2%7D%5D)
Now using the following equation of kinematics, we can calculate the distance of the block, before stopping completely. The initial speed must be 100 [m/s].

where:
Vf = final velocity = 0 (the block stops)
Vo = initial velocity = 100 [m/s]
a = - 3.39 [m/s²]
x = displacement [m]
![0 = 100^{2}-2*3.39*x\\x=\frac{10000}{2*3.39}\\x=1474.9[m]](https://tex.z-dn.net/?f=0%20%3D%20100%5E%7B2%7D-2%2A3.39%2Ax%5C%5Cx%3D%5Cfrac%7B10000%7D%7B2%2A3.39%7D%5C%5Cx%3D1474.9%5Bm%5D)
Answer:
C. Weight is mass times the acceleration of gravity.
Explanation:
Weight is the force exerted by gravity. Force is equal to mass times acceleration.