The temperature of vinegar does increase the rate of reaction according to the collision theory.
Hope this answers your question!
If you start with 0.30 m Mn₂ , at 12.5 pH, free Mn₂ concentration be equal to 4.6 x 10⁻¹¹ m
Initial molarity of Mn₂ = 0.30 M
Final molarity of Mn₂ = 4.6 x 10⁻¹¹
pH = ?
Ksp [Mn(OH)₂] = 4.6 x 10⁻¹⁴ (standard value)
Write the ionic equation
Mn(OH)₂ → Mn⁺² + 2OH⁻
[Mn⁺²] = 4.6 x 10⁻¹¹
We will calculate the concentration of OH⁻ by using Ksp expression
Ksp = [Mn⁺²][OH-]²
[Mn⁺²][OH⁻]² = 4.6 x 10⁻¹⁴
[OH⁻]² = 4.6 x 10⁻¹⁴ / 4.6 x 10⁻¹¹
[OH⁻]² = 10⁻³
[OH⁻] = (10⁻³)¹⁽²
[OH⁻] = 0.0316 M
Calculate the pOH
pOH = -log [OH⁻]
pOH = -log [0.0316]
pOH = 1.5
Now calculate pH
pH = 14 - pOH
pH = 14 - 1.5
pH = 12.5
You can also learn about molarity from the following question:
brainly.com/question/14782315
#SPJ4
Answer:
Copper electrical wires are safer to use than wires made of most other conductive metals because they are resistant to heat. As you can see, copper is the preferred metal for electrical wires for several reasons. It has high electrical conductive; it's inexpensive; it's ductile; and it's thermal resistant.
To solve this given problem, we can use the equation below:
ΔG=ΔH - T*ΔS
We are information and values are given and can be used in solving the ΔG of this particular reaction.
ΔH=-99.84kJ
ΔS=-16.80 J/K
T=298K
ΔG=(-99.84kJ)-(298K*-16.80J/K)
ΔG=-94.83kJ
The answer for ΔG is -94.83kJ.