The speed of light is 299,792,458 meters per second in vacuum.
It's somewhat slower in any material substance, and different in
each substance.
(That's 186,282.4 miles per second.)
The equilibrium constant is found by [product]/[reactant]
If the equilibrium constant is very small, such as 4.20 * 10^-31, then that means at equilibrium there is very little product and a lot of reactant.
And likewise, if there is a lot of product formed, and very little reactant, then the K value will be very large, which tells us that it is predominantly product.
At equilibrium, for any reaction, there will always be some reactant and some product present. There cannot be zero reactant or zero product. Also keep in mind that the equilibrium constant is dependent on temperature.
At equilibrium, for your reaction, it is predominantly reactants.
The order would be coefficient, law of conservation of mass, products, and reactants respectively.
<h3>Word matching</h3>
The number written in front of a chemical symbol in an equation is called a coefficient.
The total mass of a system being unchanged is known as the law of conservation of mass
The substances made in chemical reactions are called products.
The starting materials in chemical reactions are called reactants.
More on reactions can be found here: brainly.com/question/17434463
#SPJ1
Answer : The correct answer is, (c) the number of neutrons
Explanation :
Isotope : It is defined as the element that have the same number of protons but have the different number of neutrons of each of the atom.
Atomic number is defined as the number of protons or number of electrons.
Atomic number = number of protons = number of electrons
Mass number is defined as the sum of number of protons and number of neutrons.
Number of neutrons = Mass number - Atomic number
For example : For Carbon - 13 isotope.
Mass number = 13
Atomic number = 6
Number of neutrons = Mass number - Atomic number
Number of neutrons = 13 - 6 = 7
Hence, the difference between the mass number of an isotope and its atomic number is the number of neutrons.