Any buffer exists in this equilibrium
HA <=>

In a buffer, there is a large reservoir of both the undissociated acid (HA) and its conjugate base (

)
When a strong acid is added, it reacts with the large reservoir of the conjugate base (

) forming a salt and water. Since this large reservoir of the conjugate base is used, the ph does not alter drastically, but instead resist the pH change.
Answer:
13.33 g/dm³
Explanation:
Concentration (g/dm³)= mass(g) ÷ volume (dm³)
Now you need to convert 150 cm³ to dm³
1000cm³ = 1 dm³
thus, 150 cm3= 150 ÷ 1000
= 15dm³
and you already have mass in grams
so concentration = 2 ÷ 0.15
= 13.33 g/dm³ and there you go.. solved ;)
Answer:
A. There is more dissolved oxygen in colder waters than in warm water.
D. If ocean temperature rise, then the risk to the fish population increases.
Explanation:
Conclusion that can be drawn from the two facts stated above:
*Dissolved oxygen is essential nutrient for fish survival in their aquatic habitat.
*Dissolved oxygen would decrease as the temperature of aquatic habit rises, and vice versa.
*Fishes, therefore, would thrive best in colder waters than warmer waters.
The following are scenarios that can be explained by the facts given and conclusions arrived:
A. There is more dissolved oxygen in colder waters than in warm water (solubility of gases decreases with increase in temperature)
D. If ocean temperature rise, then the risk to the fish population increases (fishes will thrive best in colder waters where dissolved oxygen is readily available).