Answer:
Explanation:
Relation between energy and momentum is as follows .
E = h c / λ
E / c = h / λ
h /λ = momentum of a photon
momentum of a photon = E /c
= 11 x 10³ / 3 x 10⁸
= 3.67 x 10⁻⁵
In 4 days no of photon
= 4 x 24 x 60 x 60 = 345600 .
momentum of photon released
3.67 x 10⁻⁵ x 345600 .
= 12.68 kg m/s
This momentum will be imparted to spaceship .
12.68 = mv
12 .68 = 1300 x v
v = .00975 m /s
= 9.75 mm /s
<span>Answer: Va = 7,625 m/s
Vb = 7,404 m/s
Given:
A = 486,000 m
B = 901,000 m
G = 6.67428E-11 m^3/kg-s^2
M = 5.9736E+24 kg
r = 6,371,000 m
Recall that you need the actual orbital distance from the *center* of the Earth, giving radius plus altitude:
rA = 6,857,000 m
rB = 7,272,000 m
Equation:
V = SQRT { GM / r }
Solve for A
Va = SQRT { [ (6.67428E-11 m^3/kg-s^2) * (5.9736E+24 kg) ] / (6,857,000 m) }
Va = SQRT { [ 3.9869 m^3/s^2 ] / (6,857,000 m) }
Va = SQRT { 58,144,202 m^2/s^2 }
Va = 7,625 m/s
Solve for B
Vb = SQRT { [ (6.67428E-11 m^3/kg-s^2) * (5.9736E+24 kg) ] / (7,272,000 m) }
Vb = SQRT { [ 3.9869 m^3/s^2 ] / (7,272,000 m) }
Vb = SQRT { 54,826,016 m^2/s^2 }
Vb = 7,404 m/s</span>
Similar elements with similar properties were in the same groups and periods for instance lithium(Li) and sodium(Na) are alkaline metals and so belong to the same group (that is group 1).Also Hydrogen(H) and Helium(He) both have only one shell or energy level and so belong to the same period.
Answer:
The magnitude of the electrostatic force is 120.85 N
Explanation:
We can use Coulomb's law to find the electrostatic force between the down quarks.
In scalar form, Coulomb's law states that for charges
and
separated by a distance d, the magnitude of the electrostatic force F between them is:

where
is Coulomb's constant.
Taking the values:


and knowing the value of the Coulomb's constant:

Taking all this in consideration:


Need more than that to answer this question