There is a missing part in the question. Found the complete text on internet:
"<span>What is the largest size vehicle (kg) it can lift if the diameter of the output line is 28.0 cm? "
Solution
The diameter of the piston is 28.0 cm, this means its radius is 14.0 cm (half the diameter), so the area of the piston is
</span>

<span>
The maximum pressure of the lift is
</span>

<span>
Therefore the maximum force the piston can lift is
</span>

<span>
And the size (the mass) of the vehicle is
</span>

<span>
</span>
The planet closest to the sun; Mercury.
Answer:
At the highest point the velocity is zero, the acceleration is directed downward.
Explanation:
This is a free-fall problem, in the case of something being thrown or dropped, the acceleration is equal to -gravity, so -9.80m/s^2. So, the acceleration is never 0 here.
I attached an image from my lecture today, I find it to be helpful. You can see that because of gravity the acceleration is pulled downwards.
At the highest point the velocity is 0, but it's changing direction and that's why there's still an acceleration there.
Since we are only looking at the vertical height, we can use the free fall equation to find the height:
h = 0.5*g*t^2, where h is height in m, g is acceleration due to gravity (9.81 m/s^2), and t is time in seconds
h = 0.5*(9.81 m/s^2)*(3.7 s)^2
h = 67.15 m
Therefore, the 7th floor window is 67.15 m above ground level.
A sound wave is a longitudinal wave caused by vibrations and carried through a substance. The particles of the substance, such as air particles, vibrate back and forth along the path that the sound waves travel. Sound is transmitted through the vibrations and collisions of the particles.
This could maybe help you with your answer.