Answer:
Second option 6.3 N at 162° counterclockwise from
F1->
Explanation:
Observe the attached image. We must calculate the sum of all the forces in the direction x and in the direction y and equal the sum of the forces to 0.
For the address x we have:

For the address and we have:

The forces
and
are known

We have 2 unknowns (
and b) and we have 2 equations.
Now we clear
from the second equation and introduce it into the first equation.

Then

Then we find the value of 

Finally the answer is 6.3 N at 162° counterclockwise from
F1->
<h3>Answer;</h3>
<em>Energy is transferred.</em>
<h3>Explanation;</h3>
- Work is the force applied over a given distance, in other words work is the product of force and distance. That is; Work = force × distance.
- Work is measured in Joules.
- Energy on the other hand, is the ability to do work.
- According to the principle of work-energy a change in the kinetic energy is equivalent to the net work don e by the object. Therefore, when work is being done energy is being transferred from one point to another.
Answer:
0.28802
2.57162 W
14.28 W
53.55 W
6.07142 W
Explanation:
R = 280Ω
L = 100 mH
C = 0.800 μF
V = 50 V
ω = 10500rad/s
For RLC circuit impedance is given by

Power factor is given by

The power factor is 0.28802
The average power to the circuit is given by

The average power to the circuit is 2.57162 W
Power to resistor

Power to resistor is 14.28 W
Power to inductor

Power to the inductor is 53.55 W
Power to the capacitor

The power to the capacitor is 6.07142 W