Explanation:
It is known that wave intensity is the power to area ratio.
Mathematically, I = 
As it is given that power is 28.0 W and area is
.
Therefore, sound intensity will be calculated as follows.
I = 
= 
= 
or, = 
Thus, we can conclude that sound intensity at the position of the microphone is
.
This question needs research to be answered. From the given information alone it can't be answered without making wild assumptions.
Ideally, you need to take a look at a distribution (or a histogram) of asteroid diameters, identify the "mode" of such a distribution, and find the corresponding diameter. That value will be the answer.
I am attaching one such histogram on asteroid diameters from the IRAS asteroid catalog I could find online. (In order to get a single histogram, you need to add the individual curves in the figure first). Eyeballing this sample, I'd say the mode is somewhere around 10km, so the answer would be: the diameter of most asteroid from the IRAS asteroid catalog is about 10km.
Rigidbodies are components that allow a GameObject<u> to react to real-time physics. </u>
Explanation:
- Rigidbodies are components that allow a GameObject to react to real-time physics. This includes reactions to forces and gravity, mass, drag and momentum. You can attach a Rigidbody to your GameObject by simply clicking on Add Component and typing in Rigidbody2D in the search field.
- A rigidbody is a property, which, when added to any object, allows it to interact with a lot of fundamental physics behaviour, like forces and acceleration. You use rigidbodies on anything that you want to have mass in your game.
- You can indeed have a collider with no rigidbody. If there's no rigidbody then Unity assumes the object is static, non-moving.
- If you had a game with only two objects in it, and both move kinematically, in theory you would only need a rigidbody on one of them, even though they both move.
Answer:
Because of the formula 
Explanation:
In this problem we are describing two different processes:
- Nuclear fission occurs when a heavy, unstable nucleus breaks apart into two or more lighter nuclei
- Nuclear fusion occurs when two (or more) light nuclei fuse together producing a heavier nucleus
In both cases, the total mass of the final products is smaller than the total mass of the initial nuclei.
According to Einsten's formula, this mass difference has been converted into energy, as follows:

where:
E is the energy released in the reaction
is the mass defect, the difference between the final total mass and the initial total mass
is the speed of light
From the formula, we see that the factor
is a very large number, therefore even if the mass defect
is very small, nuclear fusion and nuclear fission release huge amounts of energy.
Answer:
C. 
Explanation:
0 charge → <em>Neutron</em>
1 charge → <em>Proton</em>
I am joyous to assist you anytime.